74 resultados para Conductive wires


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transitions between the two discharge modes in a low-frequency (∼460 kHz) inductively coupled plasma sustained by an internal oscillating radio frequency (rf) current sheet are studied. The unidirectional rf current sheet is generated by an internal antenna comprising two orthogonal sets of synphased rf currents driven in alternately reconnected copper litz wires. It is shown that in the low-to-intermediate pressure range the plasma source can be operated in the electrostatic (E) and electromagnetic (H) discharge modes. The brightness of the E -mode argon plasma glow is found remarkably higher than in inductively coupled plasmas with external flat spiral "pancake" coils. The cyclic variations of the input rf power result in pronounced hysteretic variations of the optical emission intensity and main circuit parameters of the plasma source. Under certain conditions, it appears possible to achieve a spontaneous E→H transition ("self-transition"). The observed phenomenon can be attributed to the thermal drift of the plasma parameters due to the overheating of the working gas. The discharge destabilizing factors due to the gas heating and step-wise ionization are also discussed. © 2005 American Vacuum Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radial and axial distributions of magnetic fields in a low-frequency (∼460 kHz)inductively coupled plasmasource with two internal crossed planar rf current sheets are reported. The internal antenna configuration comprises two orthogonal sets of eight alternately reconnected parallel and equidistant copper litz wires in quartz enclosures and generates three magnetic (H z, H r, and H φ) and two electric (E φ and E r) field components at the fundamental frequency. The measurements have been performed in rarefied and dense plasmas generated in the electrostatic(E) and electromagnetic (H)discharge modes using two miniature magnetic probes. It is shown that the radial uniformity and depth of the rf power deposition can be improved as compared with conventional sources of inductively coupled plasmas with external flat spiral (“pancake”) antennas. Relatively deeper rf power deposition in the plasma source results in more uniform profiles of the optical emission intensity, which indicates on the improvement of the plasma uniformity over large chamber volumes. The results of the numerical modeling of the radial magnetic field profiles are found in a reasonable agreement with the experimental data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We outline a metal-free fabrication route of in-plane Ge nanowires on Ge(001) substrates. By positively exploiting the polishing-induced defects of standard-quality commercial Ge(001) wafers, micrometer-length wires are grown by physical vapor deposition in ultra-high-vacuum environment. The shape of the wires can be tailored by the epitaxial strain induced by subsequent Si deposition, determining a progressive transformation of the wires in SiGe faceted quantum dots. This shape transition is described by finite element simulations of continuous elasticity and gives hints on the equilibrium shape of nanocrystals in the presence of tensile epitaxial strain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Attention has recently focussed on MgB2 superconductors (Tc~39K) which can be formed into wires with high material density and viable critical current densities (Jc)1. However, broader utilisation of this diboride and many others is likely to occur when facile synthesis for bulk applications is developed. To date, common synthesis methods include high temperature sintering of mixed elemental powders2, combustion synthesis3, mechano-chemical mixing with high temperature sintering4 and high pressure (~GPa region) with high temperature. In this work, we report on a lower temperature, moderate (<4MPa) pressure method to synthesise metal diborides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrathin hematite (α-Fe2O3) film deposited on a TiO2 underlayer as a photoanode for photoelectrochemical water splitting was described. The TiO2 underlayer was coated on conductive fluorine-doped tin oxide (FTO) glass by spin coating. The hematite films were formed layer-by-layer by repeating the separated two-phase hydrolysis-solvothermal reaction of iron(III) acetylacetonate and aqueous ammonia. A photocurrent density of 0.683 mA cm−2 at +1.5 V vs. RHE (reversible hydrogen electrode) was obtained under visible light (>420 nm, 100 mW cm−2) illumination. The TiO2 underlayer plays an important role in the formation of hematite film, acting as an intermediary to alleviate the dead layer effect and as a support of large surface areas to coat greater amounts of Fe2O3. The as-prepared photoanodes are notably stable and highly efficient for photoelectrochemical water splitting under visible light. This study provides a facile synthesis process for the controlled production of highly active ultrathin hematite film and a simple route for photocurrent enhancement using several photoanodes in tandem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flexible graphene-based thin film supercapacitors were made using carbon nanotube (CNT) films as current collectors and graphene films as electrodes. The graphene sheets were produced by simple electrochemical exfoliation, while the graphene films with controlled thickness were prepared by vacuum filtration. The solid-state supercapacitor was made by using two graphene/CNT films on plastic substrates to sandwich a thin layer of gelled electrolyte. We found that the thin graphene film with thickness <1 μm can greatly increase the capacitance. Using only CNT films as electrodes, the device exhibited a capacitance as low as ~0.4 mF cm−2, whereas by adding a 360 nm thick graphene film to the CNT electrodes led to a ~4.3 mF cm−2 capacitance. We experimentally demonstrated that the conductive CNT film is equivalent to gold as a current collector while it provides a stronger binding force to the graphene film. Combining the high capacitance of the thin graphene film and the high conductivity of the CNT film, our devices exhibited high energy density (8–14 Wh kg−1) and power density (250–450 kW kg−1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A long-period magnetotelluric (MT) survey, with 39 sites covering an area of 270 by 150 km, has identified melt within the thinned lithosphere of Pleistocene-Holocene Newer Volcanics Province (NVP) in southeast Australia, which has been variously attributed to mantle plume activity or edge-driven mantle convection. Two-dimensional inversions from the MT array imaged a low-resistivity anomaly (10-30Ωm) beneath the NVP at ∼40-80 km depth, which is consistent with the presence of ∼1.5-4% partial melt in the lithosphere, but inconsistent with elevated iron content, metasomatism products or a hot spot. The conductive zone is located within thin juvenile oceanic mantle lithosphere, which was accreted onto thicker Proterozoic continental mantle lithosphere. We propose that the NVP owes its origin to decompression melting within the asthenosphere, promoted by lithospheric thickness variations in conjunction with rapid shear, where asthenospheric material is drawn by shear flow at a "step" at the base of the lithosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An environmentally benign, highly conductive, and mechanically strong binder system can overcome the dilemma of low conductivity and insufficient mechanical stability of the electrodes to achieve high performance lithium ion batteries (LIBs) at a low cost and in a sustainable way. In this work, the naturally occurring binder sodium alginate (SA) is functionalized with 3,4-propylenedioxythiophene-2,5-dicarboxylic acid (ProDOT) via a one-step esterification reaction in a cyclohexane/dodecyl benzenesulfonic acid (DBSA)/water microemulsion system, resulting in a multifunctional polymer binder, that is, SA-PProDOT. With the synergetic effects of the functional groups (e.g., carboxyl, hydroxyl, and ester groups), the resultant SA-PProDOT polymer not only maintains the outstanding binding capabilities of sodium alginate but also enhances the mechanical integrity and lithium ion diffusion coefficient in the LiFePO4 (LFP) electrode during the operation of the batteries. Because of the conjugated network of the PProDOT and the lithium doping under the battery environment, the SA-PProDOT becomes conductive and matches the conductivity needed for LiFePO4 LIBs. Without the need of conductive additives such as carbon black, the resultant batteries have achieved the theoretical specific capacity of LiFePO4 cathode (ca. 170 mAh/g) at C/10 and ca. 120 mAh/g at 1C for more than 400 cycles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Skin temperature is an important physiological measure that can reflect the presence of illness and injury as well as provide insight into the localised interactions between the body and the environment. The aim of this systematic review was to analyse the agreement between conductive and infrared means of assessing skin temperature which are commonly employed in in clinical, occupational, sports medicine, public health and research settings. Full-text eligibility was determined independently by two reviewers. Studies meeting the following criteria were included in the review: 1) the literature was written in English, 2) participants were human (in vivo), 3) skin surface temperature was assessed at the same site, 4) with at least two commercially available devices employed—one conductive and one infrared—and 5) had skin temperature data reported in the study. A computerised search of four electronic databases, using a combination of 21 keywords, and citation tracking was performed in January 2015. A total of 8,602 were returned. Methodology quality was assessed by 2 authors independently, using the Cochrane risk of bias tool. A total of 16 articles (n = 245) met the inclusion criteria. Devices are classified to be in agreement if they met the clinically meaningful recommendations of mean differences within ±0.5 °C and limits of agreement of ±1.0 °C. Twelve of the included studies found mean differences greater than ±0.5 °C between conductive and infrared devices. In the presence of external stimulus (e.g. exercise and/or heat) five studies foundexacerbated measurement differences between conductive and infrared devices. This is the first review that has attempted to investigate presence of any systemic bias between infrared and conductive measures by collectively evaluating the current evidence base. There was also a consistently high risk of bias across the studies, in terms of sample size, random sequence generation, allocation concealment, blinding and incomplete outcome data. This systematic review questions the suitability of using infrared cameras in stable, resting, laboratory conditions. Furthermore, both infrared cameras and thermometers in the presence of sweat and environmental heat demonstrate poor agreement when compared to conductive devices. These findings have implications for clinical, occupational, public health, sports science and research fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the 21st Century much of the world will experience untold wealth and prosperity that could not even be conceived only some three centuries before. However as with most, if not all, of the human civilisations, increases in prosperity have accumulated significant environmental impacts that threaten to result in environmentally induced economic decline. A key part of the world’s response to this challenge is to rapidly decarbonise economies around the world, with options to achieve 60-80 per cent improvements (i.e. in the order of Factor 5) in energy and water productivity now available and proven in every sector. Drawing upon the 2009 publication “Factor 5”, in this paper we discuss how to realise such large-scale improvements, involving complexity beyond technical and process innovation. We begin by considering the concept of greenhouse gas stabilisation trajectories that include reducing current greenhouse gas emissions to achieve a ‘peaking’ of global emissions, and subsequent ‘tailing’ of emissions to the desired endpoint in ‘decarbonising’ the economy. Temporal priorities given to peaking and tailing have significant implications for the mix of decarbonising solutions and the need for government and market assistance in causing them to be implemented, requiring careful consideration upfront. Within this context we refer to a number of examples of Factor 5 style opportunities for energy productivity and decarbonisation, and then discuss the need for critical economic contributions to take such success from examples to central mechanisms in decarbonizing the global economy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highly conductive, transparent and flexible planar electrodes were fabricated using interwoven silver nanowires and single-walled carbon nanotubes (AgNW:SWCNT) in a PEDOT:PSS matrix via an epoxy transfer method from a silicon template. The planar electrodes achieved a sheet resistance of 6.6 ± 0.0 Ω/squ and an average transmission of 86% between 400 and 800 nm. A high figure of merit of 367 Ω−1 is reported for the electrodes, which is much higher than that measured for indium tin oxide and reported for other AgNW composites. The AgNW:SWCNT:PEDOT:PSS electrode was used to fabricate low temperature (annealing free) devices demonstrating their potential to function with a range of organic semiconducting polymer:fullerene bulk heterojunction blend systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High efficiency organic photovoltaic cells discussed in literature are normally restricted to devices fabricated on glass substrates. This is a consequence of the extreme brittleness and inflexibility of the commonly used transparent conductive oxide electrode, indium tin oxide (ITO). This shortcoming of ITO along with other concerns such as increasing scarcity of indium, migration of indium to organic layer, etc. makes it imperative to move away from ITO. Here we demonstrate a highly flexible Ag electrode that possesses low sheet resistances even in ultra-thin layers. It retains its conductivity under severe bending stresses where ITO fails completely. A P3HT:PCBM blend organic solar cell fabricated on this highly flexible electrode gives an efficiency of 2.3%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Target-tilted room temperature sputtering of aluminium doped zinc oxide (AZO) provides transparent conducting electrodes with sheet resistances of <10 Ω □-1 and average transmittance in the visible region of up to 84%. The properties of the AZO electrode are found to be strongly dependent on the target-tilting angle and film thickness. The AZO electrodes showed comparable performance to commercial indium tin oxide (ITO) electrodes in organic photovoltaic (OPV) devices. OPV devices containing a bulk heterojunction active layer comprised of poly(3-n-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) and an AZO transparent conducting electrode had a power conversion efficiency (PCE) of up to 2.5% with those containing ITO giving a PCE of 2.6%. These results demonstrate that AZO films are a good alternative to ITO for transparent conducting electrodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A roll-to-roll compatible, high throughput process is reported for the production of highly conductive, transparent planar electrode comprising an interwoven network of silver nanowires and single walled carbon nanotubes imbedded into poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). The planar electrode has a sheet resistance of between 4 and 7 Ω □−1 and a transmission of >86% between 800 and 400 nm with a figure of merit of between 344 and 400 Ω−1. The nanocomposite electrode is highly flexible and retains a low sheet resistance after bending at a radius of 5 mm for up to 500 times without loss. Organic photovoltaic devices containing the planar nanocomposite electrodes had efficiencies of ∼90% of control devices that used indium tin oxide as the transparent conducting electrode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In various embodiments, optoelectronic devices are described herein. The optoelectronic device may include an optoelectronic cell arranged so as to wrap around a central axis wherein the cell includes a first conductive layer, a semi-conductive layer disposed over and in electrical communication with the first conductive layer, and a second conductive layer disposed over and in electrical communication with the semi-conductive layer. In various embodiments, methods for making optoelectronic devices are described herein. The methods may include forming an optoelectronic cell while flat and wrapping the optoelectronic cell around a central axis. The optoelectronic devices may be photovoltaic devices. Alternatively, the optoelectronic devices may be organic light emitting diodes.