59 resultados para CO2 SEQUESTRATION
Resumo:
This article measures Japanese prefectures' productivity from 1991 to 2002, taking CO2 emissions into consideration, and examines the factors that impact on productivity. We use the data envelopment analysis and measure the Luenberger productivity indicator, incorporating CO2 emissions in the analysis. Our results show that productivity was decreasing during the period of investigation. According to the results of the generalized method of moment estimation, the operations rate, the share of the energy intensive industries and social capital significantly impact on productivity.
Resumo:
To produce commercially valuable ketocarotenoids in Solanum tuberosum, the 4, 4′ β-oxygenase (crtW) and 3, 3′ β-hydroxylase (crtZ) genes from Brevundimonas spp. have been expressed in the plant host under constitutive transcriptional control. The CRTW and CRTZ enzymes are capable of modifying endogenous plant carotenoids to form a range of hydroxylated and ketolated derivatives. The host (cv. Désirée) produced significant levels of nonendogenous carotenoid products in all tissues, but at the apparent expense of the economically critical metabolite, starch. Carotenoid levels increased in both wild-type and transgenic tubers following cold storage; however, stability during heat processing varied between compounds. Subcellular fractionation of leaf tissues revealed the presence of ketocarotenoids in thylakoid membranes, but not predominantly in the photosynthetic complexes. A dramatic increase in the carotenoid content of plastoglobuli was determined. These findings were corroborated by microscopic analysis of chloroplasts. In tuber tissues, esterified carotenoids, representing 13% of the total pigment found in wild-type extracts, were sequestered in plastoglobuli. In the transgenic tubers, this proportion increased to 45%, with esterified nonendogenous carotenoids in place of endogenous compounds. Conversely, nonesterified carotenoids in both wild-type and transgenic tuber tissues were associated with amyloplast membranes and starch granules.
Resumo:
This study is seeking to investigate the effect of non-thermal plasma technology in the abatement of particulate matter (PM) from the actual diesel exhaust. Ozone (O3) strongly promotes PM oxidation, the main product of which is carbon dioxide (CO2). PM oxidation into the less harmful product (CO2) is the main objective whiles the correlation between PM, O3 and CO2 is considered. A dielectric barrier discharge reactor has been designed with pulsed power technology to produce plasma inside the diesel exhaust. To characterise the system under varied conditions, a range of applied voltages from 11 kVPP to 21kVPP at repetition rates of 2.5, 5, 7.5 and 10 kHz, have been experimentally investigated. The results show that by increasing the applied voltage and repetition rate, higher discharge power and CO2 dissociation can be achieved. The PM removal efficiency of more than 50% has been achieved during the experiments and high concentrations of ozone on the order of a few hundreds of ppm have been observed at high discharge powers. Furthermore, O3, CO2 and PM concentrations at different plasma states have been analysed for time dependence. Based on this analysis, an inverse relationship between ozone concentration and PM removal has been found and the role of ozone in PM removal in plasma treatment of diesel exhaust has been highlighted.
Resumo:
The generation of solar thermal power is dependent upon the amount of sunlight exposure,as influenced by the day-night cycle and seasonal variations. In this paper, robust optimisation is applied to the design of a power block and turbine, which is generating 30 MWe from a concentrated solar resource of 560oC. The robust approach is important to attain a high average performance (minimum efficiency change) over the expected operating ranges of temperature, speed and mass flow. The final objective function combines the turbine performance and efficiency weighted by the off-design performance. The resulting robust optimisation methodology as presented in the paper gives further information that greatly aids in the design of non-classical power blocks through considering off-design conditions and resultant performance.
Resumo:
Searching for efficient solid sorbents for CO2 adsorption and separation is important for developing emergent carbon reduction and natural gas purification technology. This work, for the first time, has investigated the adsorption of CO2 on newly experimentally realized cage-like B40 fullerene (Zhai et al., 2014) based on density functional theory calculations. We find that the adsorption of CO2 on B40 fullerene involves a relatively large energy barrier (1.21 eV), however this can be greatly decreased to 0.35 eV by introducing an extra electron. A practical way to realize negatively charged B40 fullerene is then proposed by encapsulating a Li atom into the B40 fullerene (Li@B40). Li@B40 is found to be highly stable and can significantly enhance both the thermodynamics and kinetics of CO2 adsorption, while the adsorptions of N2, CH4 and H2 on the Li@B40 fullerene remain weak in comparison. Since B40 fullerene has been successfully synthesized in a most recent experiment, our results highlight a new promising material for CO2 capture and separation for future experimental validation.
Resumo:
In life cycle assessment studies, greenhouse gas (GHG) emissions from direct land-use change have been estimated to make a significant contribution to the global warming potential of agricultural products. However, these estimates have a high uncertainty due to the complexity of data requirements and difficulty in attribution of land-use change. This paper presents estimates of GHG emissions from direct land-use change from native woodland to grazing land for two beef production regions in eastern Australia, which were the subject of a multi-impact life cycle assessment study for premium beef production. Spatially- and temporally consistent datasets were derived for areas of forest cover and biomass carbon stocks using published remotely sensed tree-cover data and regionally applicable allometric equations consistent with Australia's national GHG inventory report. Standard life cycle assessment methodology was used to estimate GHG emissions and removals from direct land-use change attributed to beef production. For the northern-central New South Wales region of Australia estimates ranged from a net emission of 0.03 t CO2-e ha-1 year-1 to net removal of 0.12 t CO2-e ha-1 year-1 using low and high scenarios, respectively, for sequestration in regrowing forests. For the same period (1990-2010), the study region in southern-central Queensland was estimated to have net emissions from land-use change in the range of 0.45-0.25 t CO2-e ha-1 year-1. The difference between regions reflects continuation of higher rates of deforestation in Queensland until strict regulation in 2006 whereas native vegetation protection laws were introduced earlier in New South Wales. On the basis of liveweight produced at the farm-gate, emissions from direct land-use change for 1990-2010 were comparable in magnitude to those from other on-farm sources, which were dominated by enteric methane. However, calculation of land-use change impacts for the Queensland region for a period starting 2006, gave a range from net emissions of 0.11 t CO2-e ha-1 year-1 to net removals of 0.07 t CO2-e ha-1 year-1. This study demonstrated a method for deriving spatially- and temporally consistent datasets to improve estimates for direct land-use change impacts in life cycle assessment. It identified areas of uncertainty, including rates of sequestration in woody regrowth and impacts of land-use change on soil carbon stocks in grazed woodlands, but also showed the potential for direct land-use change to represent a net sink for GHG.
Resumo:
Changes in energy-related CO2 emissions aggregate intensity, total CO2 emissions and per-capita CO2 emissions in Australia are decomposed by using a Logarithmic Mean Divisia Index (LMDI) method for the period 1978-2010. Results indicate improvements in energy efficiency played a dominant role in the measured 17% reduction in CO2 emissions aggregate intensity in Australia over the period. Structural changes in the economy, such as changes in the relative importance of the services sector vis-à-vis manufacturing, have also played a major role in achieving this outcome. Results also suggest that, without these mitigating factors, income per capita and population effects could well have produced an increase in total emissions of more than 50% higher than actually occurred over the period. Perhaps most starkly, the results indicate that, without these mitigating factors, the growth in CO2 emissions per capita could have been over 150% higher than actually observed. Notwithstanding this, the study suggests that, for Australia to meet its Copenhagen commitment, the relative average per annum effectiveness of these mitigating factors during 2010-2020 probably needs to be almost three times what it was in the 2005-2010 period-a very daunting challenge indeed for Australia's policymakers.
Resumo:
This paper examines the asymmetry of changes in CO
Resumo:
This study investigates the relationship between per capita carbon dioxide (CO2) emissions and per capita GDP in Australia, while controlling for technological state as measured by multifactor productivity and export of black coal. Although technological progress seems to play a critical role in achieving long term goals of CO2 reduction and economic growth, empirical studies have often considered time trend to proxy technological change. However, as discoveries and diffusion of new technologies may not progress smoothly with time, the assumption of a deterministic technological progress may be incorrect in the long run. The use of multifactor productivity as a measure of technological state, therefore, overcomes the limitations and provides practical policy directions. This study uses recently developed bound-testing approach, which is complemented by Johansen- Juselius maximum likelihood approach and a reasonably large sample size to investigate the cointegration relationship. Both of the techniques suggest that cointegration relationship exists among the variables. The long-run and short-run coefficients of CO2 emissions function is estimated using ARDL approach. The empirical findings in the study show evidence of the existence of Environmental Kuznets Curve type relationship for per capita CO2 emissions in the Australian context. The technology as measured by the multifactor productivity, however, is not found as an influencing variable in emissionsincome trajectory.
Resumo:
This thesis uses semi-structured interviews and documentary analysis to explore the impact of carbon sequestration rights on rural land in Queensland and to determine whether current rural valuation knowledge and practice is equipped to deal with these rights. The carbon right in Queensland is complex and subject to significant individual variation. The nature and form of this right will determine whether it has a positive or negative impact on Queensland rural land. Significant gaps in the knowledge of industry stakeholders, including rural valuers, concerning carbon rights were found, and recommendations for valuation practice were made.
Resumo:
Following the spirit of the enhanced Russell graph measure, this paper proposes an enhanced Russell-based directional distance measure (ERBDDM) model for dealing with desirable and undesirable outputs in data envelopment analysis (DEA) and allowing some inputs and outputs to be zero. The proposed method is analogous to the output oriented slacks-based measure (OSBM) and directional output distance function approach because it allows the expansion of desirable outputs and the contraction of undesirable outputs. The ERBDDM is superior to the OSBM model and traditional approach since it is not only able to identify all the inefficiency slacks just as the latter, but also avoids the misperception and misspecification of the former, which fails to identify null-jointness production of goods and bads. The paper also imposes a strong complementary slackness condition on the ERBDDM model to deal with the occurrence of multiple projections. Furthermore, we use the Penn Table data to help us explore our new approach in the context of environmental policy evaluations and guidance for performance improvements in 111 countries.
Resumo:
To mitigate the effects of climate change, countries worldwide are advancing technologies to reduce greenhouse gas emissions. This paper proposes and measures optimal production resource reallocation using data envelopment analysis. This research attempts to clarify the effect of optimal production resource reallocation on CO2 emissions reduction, focusing on regional and industrial characteristics. We use finance, energy, and CO2 emissions data from 13 industrial sectors in 39 countries from 1995 to 2009. The resulting emissions reduction potential is 2.54 Gt-CO2 in the year 2009, with former communist countries having the largest potential to reduce CO2 emissions in the manufacturing sectors. In particular, basic material industry including chemical and steel sectors has a lot of potential to reduce CO2 emissions.