146 resultados para American Institute of Physics (AIP)
Resumo:
Several studies of the surface effect on bending properties of a nanowire (NW) have been conducted. However, these analyses are mainly based on theoretical predictions, and there is seldom integration study in combination between theoretical predictions and simulation results. Thus, based on the molecular dynamics (MD) simulation and different modified beam theories, a comprehensive theoretical and numerical study for bending properties of nanowires considering surface/intrinsic stress effects and axial extension effect is conducted in this work. The discussion begins from the Euler-Bernoulli beam theory and Timoshenko beam theory augmented with surface effect. It is found that when the NW possesses a relatively small cross-sectional size, these two theories cannot accurately interpret the true surface effect. The incorporation of axial extension effect into Euler-Bernoulli beam theory provides a nonlinear solution that agrees with the nonlinear-elastic experimental and MD results. However, it is still found inaccurate when the NW cross-sectional size is relatively small. Such inaccuracy is also observed for the Euler-Bernoulli beam theory augmented with both contributions from surface effect and axial extension effect. A comprehensive model for completely considering influences from surface stress, intrinsic stress, and axial extension is then proposed, which leads to good agreement with MD simulation results. It is thus concluded that, for NWs with a relatively small cross-sectional size, a simple consideration of surface stress effect is inappropriate, and a comprehensive consideration of the intrinsic stress effect is required.
Resumo:
Based on the molecular dynamics (MD) simulation and the classical Euler-Bernoulli beam theory, a fundamental study of the vibrational performance of the Ag nanowire (NW) is carried out. A comprehensive analysis of the quality (Q)-factor, natural frequency, beat vibration, as well as high vibration mode is presented. Two excitation approaches, i.e., velocity excitation and displacement excitation, have been successfully implemented to achieve the vibration of NWs. Upon these two kinds of excitations, consistent results are obtained, i.e., the increase of the initial excitation amplitude will lead to a decrease to the Q-factor, and moderate plastic deformation could increase the first natural frequency. Meanwhile, the beat vibration driven by a single relatively large excitation or two uniform excitations in both two lateral directions is observed. It is concluded that the nonlinear changing trend of external energy magnitude does not necessarily mean a nonconstant Q-factor. In particular, the first order natural frequency of the Ag NW is observed to decrease with the increase of temperature. Furthermore, comparing with the predictions by Euler- Bernoulli beam theory, the MD simulation provides a larger and smaller first vibration frequencies for the clamped-clamped and clamped-free thin Ag NWs, respectively. Additionally, for thin NWs, the first order natural frequency exhibits a parabolic relationship with the excitation magnitudes. The frequencies of the higher vibration modes tend to be low in comparison to Euler-Bernoulli beam theory predictions. A combined initial excitation is proposed which is capable to drive the NW under a multi-mode vibration and arrows the coexistence of all the following low vibration modes. This work sheds lights on the better understanding of the mechanical properties of NWs and benefits the increasing utilities of NWs in diverse nano-electronic devices.
Resumo:
This work is a theoretical investigation into the coupling of a single excited quantum emitter to the plasmon mode of a V groove waveguide. The V groove waveguide consists of a triangular channel milled in gold and the emitter is modeled as a dipole emitter, and could represent a quantum dot, nitrogen vacancy in diamond, or similar. In this work the dependence of coupling efficiency of emitter to plasmon mode is determined for various geometrical parameters of the emitter-waveguide system. Using the finite element method, the effect on coupling efficiency of the emitter position and orientation, groove angle, groove depth, and tip radius, is studied in detail. We demonstrate that all parameters, with the exception of groove depth, have a significant impact on the attainable coupling efficiency. Understanding the effect of various geometrical parameters on the coupling between emitters and the plasmonic mode of the waveguide is essential for the design and optimization of quantum dot–V groove devices.
Resumo:
Molecular dynamics simulations were carried out on single chain models of linear low-density polyethylene in vacuum to study the effects of branch length, branch content, and branch distribution on the polymer’s crystalline structure at 300 K. The trans/gauche (t/g) ratios of the backbones of the modeled molecules were calculated and utilized to characterize their degree of crystallinity. The results show that the t/g ratio decreases with increasing branch content regardless of branch length and branch distribution, indicating that branch content is the key molecular parameter that controls the degree of crystallinity. Although t/g ratios of the models with the same branch content vary, they are of secondary importance. However, our data suggests that branch distribution (regular or random) has a significant effect on the degree of crystallinity for models containing 10 hexyl branches/1,000 backbone carbons. The fractions of branches that resided in the equilibrium crystalline structures of the models were also calculated. On average, 9.8% and 2.5% of the branches were found in the crystallites of the molecules with ethyl and hexyl branches while C13 NMR experiments showed that the respective probabilities of branch inclusion for ethyl and hexyl branches are 10% and 6% [Hosoda et al., Polymer 1990, 31, 1999–2005]. However, the degree of branch inclusion seems to be insensitive to the branch content and branch distribution.
Resumo:
Pt/nanostructured ZnO/SiC Schottky contact devices were fabricated and characterized for hydrogen gas sensing. These devices were investigated in reverse bias due to greater sensitivity, which attributes to the application of nanostructured ZnO. The current-voltage (I-V) characteristics of these devices were measured in different hydrogen concentrations. Effective change in the barrier height for 1% hydrogen was calculated as 27.06 meV at 620°C. The dynamic response of the sensors was also investigated and a voltage shift of 325 mV was recorded at 620°C during exposure to 1% hydrogen in synthetic air.
Resumo:
In a recent paper, Gordon, Muratov, and Shvartsman studied a partial differential equation (PDE) model describing radially symmetric diffusion and degradation in two and three dimensions. They paid particular attention to the local accumulation time (LAT), also known in the literature as the mean action time, which is a spatially dependent timescale that can be used to provide an estimate of the time required for the transient solution to effectively reach steady state. They presented exact results for three-dimensional applications and gave approximate results for the two-dimensional analogue. Here we make two generalizations of Gordon, Muratov, and Shvartsman’s work: (i) we present an exact expression for the LAT in any dimension and (ii) we present an exact expression for the variance of the distribution. The variance provides useful information regarding the spread about the mean that is not captured by the LAT. We conclude by describing further extensions of the model that were not considered by Gordon,Muratov, and Shvartsman. We have found that exact expressions for the LAT can also be derived for these important extensions...
Resumo:
Ab initio spin-polarized density functional theory calculations are performed to explore the effect of single Na vacancy on NaAlH4(001) surface on the initial dehydrogenation kinetics. The authors found that two Al–H bond lengths become elongated and weakened due to the presence of a Na vacancy on the NaAlH4(001) surface. Spontaneous recombination from the surface to form molecular hydrogen is observed in the spin-polarized ab initio molecular dynamics simulation. The authors’ results indicate that surface Na vacancies play a critical role in accelerating the dehydrogenation kinetics in sodium alanate. The understanding gained here will aid in the rational design and development of complex hydride materials for hydrogen storage
Resumo:
Ab initio density functional theory calculations are performed to study the experimentally observed catalytic role of V2O5 in the recycling of hydrogen in magnesium hydride. We find that the Mg–H bond length becomes elongated when MgH2 clusters are positioned on single, two, and three coordinated oxygen sites (O1, O2, and O3) on the V2O5(001) surface. Molecular hydrogen is predicted to spontaneously form at the hole site on the V2O5(001) surface. Additionally, the activation barrier for the dissociation of hydrogen on V-doped Mg(0001) surface is 0.20 eV, which is only 1/5 of that on pure Mg(0001) surface. Our results indicate that oxygen sites on the V2O5(001)surface and the V dopant in Mg may be important facilitators for dehydrogenation and rehydrogenation, respectively. The understanding gained here will aid in the rational design and development of Mg-based hydrogen storage materials.
Resumo:
High-quality YBa2Cu3O7-δ films grown on (001) single-crystal Y-ZrO2 substrates by pulsed laser deposition have been studied as a function of substrate temperature using transmission electron microscopy. A transition from epitaxial films to c-axis oriented polycrystalline films was observed at 740°C. An intermediate, polycrystalline, BaZrO3 layer was formed from a reaction between the film and the substrate. A dominant orientation relationship of [001] YBCO//[001]int. layer//[001]YSZ and [110] YBCO//[110]int. layer//[100]YSZ was observed. The formation of grain boundaries in the films resulted in an increased microwave surface resistance and a decreased critical-current density. The superconducting transition temperature remained fairly constant at about 90 K.
Resumo:
The early stages of growth of high quality YBa2Cu 3O7-δ (YBCO) films grown on (001) Y-ZrO2 (YSZ) substrates by pulsed laser deposition have been studied using a combination of atomic force microscopy and transmission electron microscopy. A one unit cell thick YBCO layer and relatively large CuO particles formed in the initial stages. Additional YBCO grew on top of the first layer in the form of one or a few unit cell high c-axis oriented islands about 30 nm in diameter. The rounded islands subsequently coalesced into faceted domains. Elongated Y 2BaCuO5 particles nucleated after the first layer of YBCO. A highly textured BaZrO3 layer formed between the YSZ and the YBCO with a cube-on-cube dominant orientation relationship with respect to the YBCO film.
Resumo:
The growth of c-axis oriented Y1Ba2Cu 3Ox thin films on an amorphous buffer layer of Y-ZrO 2, deposited on sapphire substrates, was investigated. Both films were grown by a pulsed laser deposition technique. A strong correlation was observed between the properties of Y1Ba2Cu 3Ox and the thickness of the buffer layer. A Tc of 89 K was obtained for an optimal buffer layer thickness of 9 nm. A model that adequately describes the film growth process was developed. A multilayer system of Y1Ba2Cu3Ox and amorphous Y-ZrO2 was grown and a Tc of 87 K for the upper c-axis oriented layer was measured.
Resumo:
c-axis-oriented YBa2Cu3O7-x (YBCO) thin films were laser deposited on (001) yttria-stabilized ZrO2 (YSZ) substrates with different surface morphologies. The in-plane orientation of the films on smooth substrates was sensitive to the deposition conditions, often resulting in mixed orientations. However, a strongly dominating [110] YBCO//[110]YSZ orientation was obtained at a deposition temperature of 770°C. Films on substrates with surface steps, induced by depositing a homoepitaxial buffer layer or by thermally annealing the substrate, had a [110]YBCO//[100]YSZ orientation when deposited at the same temperature. It was concluded that the [110]YBCO//[100] YSZ orientation was promoted by a graphoepitaxial mechanism. Films prepared under identical conditions on smooth and stepped substrates grew with extended c axes on the former. It is proposed that the extension can be induced by disorder, invoked by a low oxygen pressure and a low density of adsorption sites. The disorder may be eliminated by either an increase of the oxygen pressure or an increase of the density of adsorption sites in the form of steps. The film microstructure influenced the microwave surface resistance, which was similar for films with one exclusive in-plane orientation and higher for films with mixed orientations. The films on the stepped surfaces had superior superconducting properties; inductive measurements gave a Tc onset of 88 K, a ΔT(90%-10%) c of 0.2 K, and the transport jc was 1.5×106 A/cm2 at 83 K, for films on substrates with homoepitaxial buffer layers.
Resumo:
We investigate the physical origins of etching observed during Ti diffusion. The relationship between observed etch depth and water vapor content in the annealing environment is quantified. The dynamics of the etching process are also identified. It is discovered that water vapor content is essential for etching and that there is a characteristic delay before etching is observed. From these observations we can conclude that the process is electrochemical in nature with ionic defects diffusing into the Ti strip from the lithium niobate and these defects catalyzing the dissociation of water into reactive ions.
Resumo:
Transport through crowded environments is often classified as anomalous, rather than classical, Fickian diffusion. Several studies have sought to describe such transport processes using either a continuous time random walk or fractional order differential equation. For both these models the transport is characterized by a parameter α, where α = 1 is associated with Fickian diffusion and α < 1 is associated with anomalous subdiffusion. Here, we simulate a single agent migrating through a crowded environment populated by impenetrable, immobile obstacles and estimate α from mean squared displacement data. We also simulate the transport of a population of such agents through a similar crowded environment and match averaged agent density profiles to the solution of a related fractional order differential equation to obtain an alternative estimate of α. We examine the relationship between our estimate of α and the properties of the obstacle field for both a single agent and a population of agents; we show that in both cases, α decreases as the obstacle density increases, and that the rate of decrease is greater for smaller obstacles. Our work suggests that it may be inappropriate to model transport through a crowded environment using widely reported approaches including power laws to describe the mean squared displacement and fractional order differential equations to represent the averaged agent density profiles.
Resumo:
Much interest surrounds the effect of extracellular matrix (ECM) elasticity on cell behavior. Here we present a rapid method for measuring the elasticity of synthetic ECM substrates based on indentation of the substrate with a ferromagnetic sphere and optical tracking of the resulting deformation. We find that this method yields order-of-magnitude agreement with atomic force microscopy elasticity measurements, but that the degree of this agreement depends strongly on sphere density and gel elasticity. In its regime of greatest accuracy, we envision that this method may be used for high-throughput characterization of ECM substrates in cell biological studies.