60 resultados para 620101 Wheat


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Barley yellow dwarf luteovirus-GPV (BYDV-GPV) is a common problem in Chinese wheat crops but is unrecorded elsewhere. A defining characteristic of GPV is its capacity to be transmitted efficiently by both Schizaphis graminum and Rhopaloshiphum padi. This dual aphid species transmission contrasts with those of BYDV-RPV and BYDV-SGV, globally distributed viruses, which are efficiently transmitted only by Rhopaloshiphum padi and Schizaphis graminum respectively. The viral RNA sequences encoding the coat protein (22K) gene, the movement protein (17K) gene, the region surrounding the conserved GDD motif of the polymerase gene and the intergenic sequences between these genes were determined for GPV and an Australian isolate of BYDV-RPV (RPVa). In all three genes, the sequences of GPV and RPVa were more similar to those of an American isolate of BYDV-RPV (RPVu) than to any other luteovirus for which there is data available. RPVa and RPVu were very similar, especially their coat proteins which had 97% identity at the amino acid level. The coat protein of GPV had 76% and 78% amino acid identity with RPVa and RPVu respectively. The data suggest that RPVu and RPVa are correctly named as strains of the same serotype and that GPV is sufficiently different from either RPV strain to be considered a distinct BYDV type. The coat protein and movement protein genes of GPV are very dissimilar to SGV. The polymerase sequences of RPVu, RPVa and GPV show close affinities with those of the sobemo-like luteoviruses and little similarity with those of the carmo-like luteoviruses. The sequences of the coat proteins, movement proteins and the polymerase segments of BYDV serotypes, other than RPV and GPV, form a cluster that is separate from their counterpart sequences from dicot-infecting luteoviruses. The RPV and GPV isolates consistently fall within a dicot-infecting cluster. This suggests that RPV and GPV evolved from within this group of viruses. Since these other viruses all infect dicots it seems likely that their common ancestor infected a dicot and that RPV and GPV evolved from a virus that switched hosts from a dicot to a monocot.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The complete nucleotide sequence of genome segment S4 of rice ragged stunt oryzavirus (RRSV, Thai-isolate) was determined. The 3823 bp sequence contains two large open reading frames (ORFs). ORF1, spanning nucleotides 12 to 3776, is capable of encoding a protein of M(r) 141,380 (P4a). The P4a amino acid sequence predicted from the nucleotide sequence contains sequence motifs conserved in RNA-dependent RNA polymerases (RDRPs). When compared for evolutionary relationships with RDRPs of other reoviruses using the amino acid sequences around the conserved GDD motif, P4a was shown to be more related to Nilaparvata lugens reovirus and reovirus serotype 3 than to rice dwarf phytoreovirus, bovine rotavirus or bluetongue virus. The ORF2, spanning nucleotides 491 to 1468, is out of frame with ORF1 and is capable of encoding a protein of 36, 920 (P4b). Coupled in vitro transcription-translation from cloned ORF2 in wheat germ extract confirmed the existence of ORF2 but in vivo production and possible function of P4b is yet to be determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have characterised the subgenomic RNAs of an Australian isolate of BYDV-PAV. Northern blot analyses of infected plants and protoplasts have shown that this isolate synthesises three subgenomic RNAs. Precise mapping of the transcription start sites of all three subgenomic RNAs and translational analyses of subgenomic RNA 2 and 3 have revealed a number of features. First, the transcription start site of subgenomic RNA 1 in this isolate differs markedly from the start site determined for an Illinois isolate of BYDV-PAV. Second, the start sites of subgenomic RNA 1 and 2 occur at a sequence that closely resembles the 5' end sequence of the genomic RNA (5'AGUGAAGA). Third, subgenomic RNA 2 appears to express ORF 6 of BYDV-PAV but the gene product is truncated due to the appearance of a new stop codon in the sequence. Last, subgenomic RNA 3, which is abundantly transcribed and encapsidated by the virus particle, appears to have no coding ability. We postulate that this novel subgenomic RNA has a regulatory function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The global food system is undergoing unprecedented change. With population increases, demands for food globally will continue to rise at the same time that agricultural environments are compromised through urban encroachment, climate change and environmental degradation. Australia has long identified itself as an agricultural exporting nation—but what will its capacity be in feeding an increasing global population as it also comes to terms with extreme climatic events such as the floods, fires and droughts, and reduced water availability, experienced in recent decades? This chapter traces the history of Australian agricultural exports and evaluates its food production and export capacity against scientific predictions of climate change impacts. With the federal government forecasting declines in the production of wheat, beef, dairy and sugar, Australia’s key export commodities may well be compromised. Calls to produce more food using new technologies are likely to generate significant environmental problems. Yet, a radical reconfiguration of Australian agriculture which incorporates alternative approaches, such as agro-ecology, is rarely considered by government and industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For over 150 years Australia has exported bulk, undifferentiated, commodities such as wool, wheat, meat and sugar to the UK and more recently to Japan, Korea, and the Middle East. It is estimated that, each year, Australia's farming system feeds a domestic population of some 22 million people, while exporting enough food to feed another 40 million. With the Australian population expected to double in the next 40 years, and with the anticipated growth in the world's population to reach a level of some 9 billion (from its present level of 7 billion) in the same period, there are strong incentives for an expansion of food production in Australia. Neoliberal settings are encouraging this expansion at the same time as they are facilitating importation of foods, higher levels of foreign direct investment and the commoditisation of resources (such as water). Yet, expansion in food production – and in an era of climate change – will continue to compromise the environment. After discussing Australia's neoliberal framework and its relation to farming, this paper outlines how Australia is attempting to address the issue of food security. It argues that productivist farming approaches that are favoured by both industry and government are proving incapable of bringing about long-term production outcomes that will guarantee national food security.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Lesser Grain Borer is a major pest of stored grain with a global distribution. This project has, for the first time recorded this pest throughout broad spatial areas, tens of kilometres from grain production or storage. Statistical analysis revealed that different factors such as ambient temperature and the availability of food resources affect R. dominica differently between different habitats. This suggests that, contrary to the prevailing view, this pest is not solely dependent on stored wheat and can continue to persist throughout a range of habitats. These findings have important management implications for Australia's wheat industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global cereal production will need to increase by 50% to 70% to feed a world population of about 9 billion by 2050. This intensification is forecast to occur mostly in subtropical regions, where warm and humid conditions can promote high N2O losses from cropped soils. To secure high crop production without exacerbating N2O emissions, new nitrogen (N) fertiliser management strategies are necessary. This one-year study evaluated the efficacy of a nitrification inhibitor (3,4-dimethylpyrazole phosphate—DMPP) and different N fertiliser rates to reduce N2O emissions in a wheat–maize rotation in subtropical Australia. Annual N2O emissions were monitored using a fully automated greenhouse gas measuring system. Four treatments were fertilized with different rates of urea, including a control (40 kg-N ha−1 year−1), a conventional N fertiliser rate adjusted on estimated residual soil N (120 kg-N ha−1 year−1), a conventional N fertiliser rate (240 kg-N ha−1 year−1) and a conventional N fertiliser rate (240 kg-N ha−1 year−1) with nitrification inhibitor (DMPP) applied at top dressing. The maize season was by far the main contributor to annual N2O emissions due to the high soil moisture and temperature conditions, as well as the elevated N rates applied. Annual N2O emissions in the four treatments amounted to 0.49, 0.84, 2.02 and 0.74 kg N2O–N ha−1 year−1, respectively, and corresponded to emission factors of 0.29%, 0.39%, 0.69% and 0.16% of total N applied. Halving the annual conventional N fertiliser rate in the adjusted N treatment led to N2O emissions comparable to the DMPP treatment but extensively penalised maize yield. The application of DMPP produced a significant reduction in N2O emissions only in the maize season. The use of DMPP with urea at the conventional N rate reduced annual N2O emissions by more than 60% but did not affect crop yields. The results of this study indicate that: (i) future strategies aimed at securing subtropical cereal production without increasing N2O emissions should focus on the fertilisation of the summer crop; (ii) adjusting conventional N fertiliser rates on estimated residual soil N is an effective practice to reduce N2O emissions but can lead to substantial yield losses if the residual soil N is not assessed correctly; (iii) the application of DMPP is a feasible strategy to reduce annual N2O emissions from sub-tropical wheat–maize rotations. However, at the N rates tested in this study DMPP urea did not increase crop yields, making it impossible to recoup extra costs associated with this fertiliser. The findings of this study will support farmers and policy makers to define effective fertilisation strategies to reduce N2O emissions from subtropical cereal cropping systems while maintaining high crop productivity. More research is needed to assess the use of DMPP urea in terms of reducing conventional N fertiliser rates and subsequently enable a decrease of fertilisation costs and a further abatement of fertiliser-induced N2O emissions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A unique high temporal frequency dataset from an irrigated cotton-wheat rotation was used to test the agroecosystem model DayCent to simulate daily N2O emissions from sub-tropical vertisols under different irrigation intensities. DayCent was able to simulate the effect of different irrigation intensities on N2O fluxes and yield, although it tended to overestimate seasonal fluxes during the cotton season. DayCent accurately predicted soil moisture dynamics and the timing and magnitude of high fluxes associated with fertilizer additions and irrigation events. At the daily scale we found a good correlation of predicted vs. measured N2O fluxes (r2 = 0.52), confirming that DayCent can be used to test agricultural practices for mitigating N2O emission from irrigated cropping systems. A 25 year scenario analysis indicated that N2O losses from irrigated cotton-wheat rotations on black vertisols in Australia can be substantially reduced by an optimized fertilizer and irrigation management system (i.e. frequent irrigation, avoidance of excessive fertiliser application), while sustaining maximum yield potentials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION Globally, one-third of food production is lost annually due to negligent authorities. India alone loses some 21 million tonnes of wheat per year even while it has 200 million food-insecure people in the nation. Disturbingly provocative as it may sound, it is amazing how national and international institutions and governments make use of human hunger for their own survival (Raghib 2013). The global food system is increasingly insecure. Challenges to long-term global food security are encapsulated by resource scarcity, environmental degradation, biodiversity loss, climate change, reductions of farm labour and a growing world population. These issues are caused and aggravated by the spread of corporatised and monopolised food systems, dietary change, and urbanisation. These factors have rapidly brought food insecurity under the umbrella of unconventional security threats (Heukelom 2011). For some, humanitarian crises associated with food insecurity, or what has been dubbed ‘the silent tsunami’, is a pending peril, notably for the world’s poorest and most vulnerable people. For others, the food production industry is an emerging market with unprecedented profits. Despite this problem of food scarcity we are witnessing extraordinary ‘food wastage’, notably in North America and Europe, on a scale that would reportedly be capable of feeding the world’s hungry six times over (Stuart 2012). As the opening quotation to this chapter suggests, governments and corporations are deeply involved in the contexts, politics, and resources associated with food related issues. As many economically developed and advanced industrial nations are reporting a rise out of recession, announcements are made by the world’s richest countries that they are to cut $US2 billion per year from food aid. The head of the World Food Aid Programme, Rosette Sheeran, warns that such cuts could result in ‘the loss of a generation’ (Walters 2011). The global food crisis has also reinvigorated debates about agricultural development and genetically modified (GM) food; as well as fuelling debates about poverty, debt and security. This chapter provides a discussion of the political economy of global food debates and explores the threats and opportunities surrounding food production and future food security.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Land use and agricultural practices can result in important contributions to the global source strength of atmospheric nitrous oxide (N2O) and methane (CH4). However, knowledge of gas flux from irrigated agriculture is very limited. From April 2005 to October 2006, a study was conducted in the Aral Sea Basin, Uzbekistan, to quantify and compare emissions of N2O and CH4 in various annual and perennial land-use systems: irrigated cotton, winter wheat and rice crops, a poplar plantation and a natural Tugai (floodplain) forest. In the annual systems, average N2O emissions ranged from 10 to 150 μg N2O-N m−2 h−1 with highest N2O emissions in the cotton fields, covering a similar range of previous studies from irrigated cropping systems. Emission factors (uncorrected for background emission), used to determine the fertilizer-induced N2O emission as a percentage of N fertilizer applied, ranged from 0.2% to 2.6%. Seasonal variations in N2O emissions were principally controlled by fertilization and irrigation management. Pulses of N2O emissions occurred after concomitant N-fertilizer application and irrigation. The unfertilized poplar plantation showed high N2O emissions over the entire study period (30 μg N2O-N m−2 h−1), whereas only negligible fluxes of N2O (<2 μg N2O-N m−2 h−1) occurred in the Tugai. Significant CH4 fluxes only were determined from the flooded rice field: Fluxes were low with mean flux rates of 32 mg CH4 m−2 day−1 and a low seasonal total of 35.2 kg CH4 ha−1. The global warming potential (GWP) of the N2O and CH4 fluxes was highest under rice and cotton, with seasonal changes between 500 and 3000 kg CO2 eq. ha−1. The biennial cotton–wheat–rice crop rotation commonly practiced in the region would average a GWP of 2500 kg CO2 eq. ha−1 yr−1. The analyses point out opportunities for reducing the GWP of these irrigated agricultural systems by (i) optimization of fertilization and irrigation practices and (ii) conversion of annual cropping systems into perennial forest plantations, especially on less profitable, marginal lands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A multi-season 15N tracer recovery experiment was conducted on an Oxisol cropped with wheat, maize and sorghum to compare crop N recoveries of different fertilisation strategies and determine the main pathways of N losses that limit N recovery in these agroecosystems. In the wheat and maize seasons, 15N-labelled fertiliser was applied as conventional urea (CONV) and urea coated with a nitrification inhibitor (DMPP). In sorghum, the fate of 15N-labelled urea was monitored in this crop following a legume ley pasture (L70) or a grass ley pasture (G100). The fertiliser N applied to sorghum in the legume-cereal rotation was reduced (70 kg N ha−1) compared to the grass-cereal (100 kg N ha−1) to assess the availability of the N residual from the legume ley pasture. Average crop N recoveries were 73 % (CONV) and 77 % (DMPP) in wheat and 50 % (CONV) and 51 % (DMPP) in maize, while in sorghum were 71 % (L70) and 53 % (G100). Data gathered in this study indicate that the intrinsic physical and chemical conditions of Oxisols can be extremely effective in limiting N losses via deep leaching or denitrification. Elevated crop 15N recoveries can be therefore obtained in subtropical Oxisols using conventional urea while in these agroecosystems DMPP urea has no significant scope to increase fertiliser N recovery in the crop. Overall, introducing a legume phase to limit the fertiliser N requirements of the following cereal crop proved to be the most effective strategy to reduce N losses and increase fertiliser N recovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This project constructed virtual plant leaf surfaces from digitised data sets for use in droplet spray models. Digitisation techniques for obtaining data sets for cotton, chenopodium and wheat leaves are discussed and novel algorithms for the reconstruction of the leaves from these three plant species are developed. The reconstructed leaf surfaces are included into agricultural droplet spray models to investigate the effect of the nozzle and spray formulation combination on the proportion of spray retained by the plant. A numerical study of the post-impaction motion of large droplets that have formed on the leaf surface is also considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper combines experimental data with simple mathematical models to investigate the influence of spray formulation type and leaf character (wettability) on shatter, bounce and adhesion of droplets impacting with cotton, rice and wheat leaves. Impaction criteria that allow for different angles of the leaf surface and the droplet impact trajectory are presented; their predictions are based on whether combinations of droplet size and velocity lie above or below bounce and shatter boundaries. In the experimental component, real leaves are used, with all their inherent natural variability. Further, commercial agricultural spray nozzles are employed, resulting in a range of droplet characteristics. Given this natural variability, there is broad agreement between the data and predictions. As predicted, the shatter of droplets was found to increase as droplet size and velocity increased, and the surface became harder to wet. Bouncing of droplets occurred most frequently on hard to wet surfaces with high surface tension mixtures. On the other hand, a number of small droplets with low impact velocity were observed to bounce when predicted to lie well within the adhering regime. We believe this discrepancy between the predictions and experimental data could be due to air layer effects that were not taken into account in the current bounce equations. Other discrepancies between experiment and theory are thought to be due to the current assumption of a dry impact surface, whereas, in practice, the leaf surfaces became increasingly covered with fluid throughout the spray test runs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ordinal qualitative data are often collected for phenotypical measurements in plant pathology and other biological sciences. Statistical methods, such as t tests or analysis of variance, are usually used to analyze ordinal data when comparing two groups or multiple groups. However, the underlying assumptions such as normality and homogeneous variances are often violated for qualitative data. To this end, we investigated an alternative methodology, rank regression, for analyzing the ordinal data. The rank-based methods are essentially based on pairwise comparisons and, therefore, can deal with qualitative data naturally. They require neither normality assumption nor data transformation. Apart from robustness against outliers and high efficiency, the rank regression can also incorporate covariate effects in the same way as the ordinary regression. By reanalyzing a data set from a wheat Fusarium crown rot study, we illustrated the use of the rank regression methodology and demonstrated that the rank regression models appear to be more appropriate and sensible for analyzing nonnormal data and data with outliers.