628 resultados para Visual identification tasks
Resumo:
The purpose of this study was to derive ActiGraph cut-points for sedentary (SED), light-intensity physical activity (LPA), and moderate-to-vigorous physical activity (MVPA) in toddlers and evaluate their validity in an independent sample. The predictive validity of established preschool cut-points were also evaluated and compared. Twenty-two toddlers (mean age = 2.1 years ± 0.4 years) wore an ActiGraph accelerometer during a videotaped 20-min play period. Videos were subsequently coded for physical activity (PA) intensity using the modified Children's Activity Rating Scale (CARS). Receiver operating characteristic (ROC) curve analyses were conducted to determine cut-points. Predictive validity was assessed in an independent sample of 18 toddlers (mean age = 2.3 ± 0.4 years). From the ROC curve analyses, the 15-s count ranges corresponding to SED, LPA, and MVPA were 0–48, 49–418, and >418 counts/15 s, respectively. Classification accuracy was fair for the SED threshold (ROC-AUC = 0.74, 95% confidence interval = 0.71–0.76) and excellent for MVPA threshold (ROC-AUC = 0.90, 95% confidence interval = 0.88–0.92). In the cross-validation sample, the toddler cut-point and established preschool cut-points significantly overestimated time spent in SED and underestimated time in spent in LPA. For MVPA, mean differences between observed and predicted values for the toddler and Pate cut-points were not significantly different from zero. In summary, the ActiGraph accelerometer can provide useful group-level estimates of MVPA in toddlers. The results support the use of the Pate cut-point of 420 counts/15 s for MVPA.
Resumo:
Most of existing motorway traffic safety studies using disaggregate traffic flow data aim at developing models for identifying real-time traffic risks by comparing pre-crash and non-crash conditions. One of serious shortcomings in those studies is that non-crash conditions are arbitrarily selected and hence, not representative, i.e. selected non-crash data might not be the right data comparable with pre-crash data; the non-crash/pre-crash ratio is arbitrarily decided and neglects the abundance of non-crash over pre-crash conditions; etc. Here, we present a methodology for developing a real-time MotorwaY Traffic Risk Identification Model (MyTRIM) using individual vehicle data, meteorological data, and crash data. Non-crash data are clustered into groups called traffic regimes. Thereafter, pre-crash data are classified into regimes to match with relevant non-crash data. Among totally eight traffic regimes obtained, four highly risky regimes were identified; three regime-based Risk Identification Models (RIM) with sufficient pre-crash data were developed. MyTRIM memorizes the latest risk evolution identified by RIM to predict near future risks. Traffic practitioners can decide MyTRIM’s memory size based on the trade-off between detection and false alarm rates. Decreasing the memory size from 5 to 1 precipitates the increase of detection rate from 65.0% to 100.0% and of false alarm rate from 0.21% to 3.68%. Moreover, critical factors in differentiating pre-crash and non-crash conditions are recognized and usable for developing preventive measures. MyTRIM can be used by practitioners in real-time as an independent tool to make online decision or integrated with existing traffic management systems.
Resumo:
Existing techniques for automated discovery of process models from event logs largely focus on extracting flat process models. In other words, they fail to exploit the notion of subprocess, as well as structured error handling and repetition constructs provided by contemporary process modeling notations, such as the Business Process Model and Notation (BPMN). This paper presents a technique for automated discovery of BPMN models containing subprocesses, interrupting and non-interrupting boundary events, and loop and multi-instance markers. The technique analyzes dependencies between data attributes associated with events, in order to identify subprocesses and to extract their associated logs. Parent process and subprocess models are then discovered separately using existing techniques for flat process model discovery. Finally, the resulting models and logs are heuristically analyzed in order to identify boundary events and markers. A validation with one synthetic and two real-life logs shows that process models derived using the proposed technique are more accurate and less complex than those derived with flat process model discovery techniques.
Resumo:
Two-photon fluorescence spectroscopy has been performed on rat skeletal muscles to investigate the effect of fixation processes on the micro-environments of the endogenous fluorophors in rat skeletal muscles. The two-photon fluorescence spectra measured for different fixation periods show a differential among those samples that were fixed in water, formalin and methanol, respectively. The results imply that two-photon fluorescence spectroscopy can be a potential technique for identification of healthy and malignant biological tissues.
Resumo:
This paper presents Sequence Matching Across Route Traversals (SMART); a generally applicable sequence-based place recognition algorithm. SMART provides invariance to changes in illumination and vehicle speed while also providing moderate pose invariance and robustness to environmental aliasing. We evaluate SMART on vehicles travelling at highly variable speeds in two challenging environments; firstly, on an all-terrain vehicle in an off-road, forest track and secondly, using a passenger car traversing an urban environment across day and night. We provide comparative results to the current state-of-the-art SeqSLAM algorithm and investigate the effects of altering SMART’s image matching parameters. Additionally, we conduct an extensive study of the relationship between image sequence length and SMART’s matching performance. Our results show viable place recognition performance in both environments with short 10-metre sequences, and up to 96% recall at 100% precision across extreme day-night cycles when longer image sequences are used.
Resumo:
This thesis developed a new method for measuring extremely low amounts of organic and biological molecules, using Surface enhanced Raman Spectroscopy. This method has many potential applications, e.g. medical diagnosis, public health, food provenance, antidoping, forensics and homeland security. The method development used caffeine as the small molecule example, and erythropoietin (EPO) as the large molecule. This method is much more sensitive and specific than currently used methods; rapid, simple and cost effective. The method can be used to detect target molecules in beverages and biological fluids without the usual preparation steps.
Resumo:
The focus of this research is the creation of a stage-directing training manual on the researcher's site at the National Institute of Dramatic Art. The directing procedures build on the work of Stanislavski's Active Analysis and findings from present-day visual cognition studies. Action research methodology and evidence-based data collection are employed to improve the efficacy of both the directing procedures and the pedagogical manual. The manual serves as a supplement to director training and a toolkit for the more experienced practitioner. The manual and research findings provide a unique and innovative contribution to the field of theatre directing.
Resumo:
We investigated memories of room-sized spatial layouts learned by sequentially or simultaneously viewing objects from a stationary position. In three experiments, sequential viewing (one or two objects at a time) yielded subsequent memory performance that was equivalent or superior to simultaneous viewing of all objects, even though sequential viewing lacked direct access to the entire layout. This finding was replicated by replacing sequential viewing with directed viewing in which all objects were presented simultaneously and participants’ attention was externally focused on each object sequentially, indicating that the advantage of sequential viewing over simultaneous viewing may have originated from focal attention to individual object locations. These results suggest that memory representation of object-to-object relations can be constructed efficiently by encoding each object location separately, when those locations are defined within a single spatial reference system. These findings highlight the importance of considering object presentation procedures when studying spatial learning mechanisms.
Resumo:
Objects in an environment are often encountered sequentially during spatial learning, forming a path along which object locations are experienced. The present study investigated the effect of spatial information conveyed through the path in visual and proprioceptive learning of a room-sized spatial layout, exploring whether different modalities differentially depend on the integrity of the path. Learning object locations along a coherent path was compared with learning them in a spatially random manner. Path integrity had little effect on visual learning, whereas learning with the coherent path produced better memory performance than random order learning for proprioceptive learning. These results suggest that path information has differential effects in visual and proprioceptive spatial learning, perhaps due to a difference in the way one establishes a reference frame for representing relative locations of objects.
Resumo:
It has been shown that spatial information can be acquired from both visual and nonvisual modalities. The present study explored how spatial information from vision and proprioception was represented in memory, investigating orientation dependence of spatial memories acquired through visual and proprioceptive spatial learning. Experiment 1 examined whether visual learning alone and proprioceptive learning alone yielded orientation-dependent spatial memory. Results showed that spatial memories from both types of learning were orientation dependent. Experiment 2 explored how different orientations of the same environment were represented when they were learned visually and proprioceptively. Results showed that both visually and proprioceptively learned orientations were represented in spatial memory, suggesting that participants established two different reference systems based on each type of learning experience and interpreted the environment in terms of these two reference systems. The results provide some initial clues to how different modalities make unique contributions to spatial representations.
Resumo:
Sensing the mental, physical and emotional demand of a driving task is of primary importance in road safety research and for effectively designing in-vehicle information systems (IVIS). Particularly, the need of cars capable of sensing and reacting to the emotional state of the driver has been repeatedly advocated in the literature. Algorithms and sensors to identify patterns of human behavior, such as gestures, speech, eye gaze and facial expression, are becoming available by using low cost hardware: This paper presents a new system which uses surrogate measures such as facial expression (emotion) and head pose and movements (intention) to infer task difficulty in a driving situation. 11 drivers were recruited and observed in a simulated driving task that involved several pre-programmed events aimed at eliciting emotive reactions, such as being stuck behind slower vehicles, intersections and roundabouts, and potentially dangerous situations. The resulting system, combining face expressions and head pose classification, is capable of recognizing dangerous events (such as crashes and near misses) and stressful situations (e.g. intersections and way giving) that occur during the simulated drive.
Resumo:
This article presents the field applications and validations for the controlled Monte Carlo data generation scheme. This scheme was previously derived to assist the Mahalanobis squared distance–based damage identification method to cope with data-shortage problems which often cause inadequate data multinormality and unreliable identification outcome. To do so, real-vibration datasets from two actual civil engineering structures with such data (and identification) problems are selected as the test objects which are then shown to be in need of enhancement to consolidate their conditions. By utilizing the robust probability measures of the data condition indices in controlled Monte Carlo data generation and statistical sensitivity analysis of the Mahalanobis squared distance computational system, well-conditioned synthetic data generated by an optimal controlled Monte Carlo data generation configurations can be unbiasedly evaluated against those generated by other set-ups and against the original data. The analysis results reconfirm that controlled Monte Carlo data generation is able to overcome the shortage of observations, improve the data multinormality and enhance the reliability of the Mahalanobis squared distance–based damage identification method particularly with respect to false-positive errors. The results also highlight the dynamic structure of controlled Monte Carlo data generation that makes this scheme well adaptive to any type of input data with any (original) distributional condition.
Resumo:
The primary aim of this paper was to investigate heterogeneity in language abilities of children with a confirmed diagnosis of an ASD (N = 20) and children with typical development (TD; N = 15). Group comparisons revealed no differences between ASD and TD participants on standard clinical assessments of language ability, reading ability or nonverbal intelligence. However, a hierarchical cluster analysis based on spoken nonword repetition and sentence repetition identified two clusters within the combined group of ASD and TD participants. The first cluster (N = 6) presented with significantly poorer performances than the second cluster (N = 29) on both of the clustering variables in addition to single word and nonword reading. The significant differences between the two clusters occur within a context of Cluster 1 having language impairment and a tendency towards more severe autistic symptomatology. Differences between the oral language abilities of the first and second clusters are considered in light of diagnosis, attention and verbal short term memory skills and reading impairment.
Resumo:
It is well established that the time to name target objects can be influenced by the presence of categorically related versus unrelated distractor items. A variety of paradigms have been developed to determine the level at which this semantic interference effect occurs in the speech production system. In this study, we investigated one of these tasks, the postcue naming paradigm, for the first time with fMRI. Previous behavioural studies using this paradigm have produced conflicting interpretations of the processing level at which the semantic interference effect takes place, ranging from pre- to post-lexical. Here we used fMRI with a sparse, event-related design to adjudicate between these competing explanations. We replicated the behavioural postcue naming effect for categorically related target/distractor pairs, and observed a corresponding increase in neuronal activation in the right lingual and fusiform gyri-regions previously associated with visual object processing and colour-form integration. We interpret these findings as being consistent with an account that places the semantic interference effect in the postcue paradigm at a processing level involving integration of object attributes in short-term memory.