636 resultados para engineering laboratory


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasma Nanoscience is a multidisciplinary research field which aims to elucidate the specific roles, purposes, and benefits of the ionized gas environment in assembling and processing nanoscale objects in natural, laboratory and technological situations. Compared to neutral gas-based routes, in low-temperature weakly-ionized plasmas there is another level of complexity related to the necessity of creating and sustaining a suitable degree of ionization and a much larger number of species generated in the gas phase. The thinner the nanotubes, the stronger is the quantum confinement of electrons and more unique size-dependent quantum effects can emerge. Furthermore, due to a very high mobility of electrons, the surfaces are at a negative potential compared to the plasma bulk. Therefore, there are non-uniform electric fields within the plasma sheath. The electric field lines start in the plasma bulk and converge to the sharp tips of the developing one-dimensional nanostructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the application low-temperature plasmas for roughening Si surfaces which is becoming increasingly important for a number of applications ranging from Si quantum dots to cell and protein attachment for devices such as "laboratory on a chip" and sensors. It is a requirement that Si surface roughening is scalable and is a single-step process. It is shown that the removal of naturally forming SiO2 can be used to assist in the roughening of the surface using a low-temperature plasma-based etching approach, similar to the commonly used in semiconductor micromanufacturing. It is demonstrated that the selectivity of SiO2 /Si etching can be easily controlled by tuning the plasma power, working gas pressure, and other discharge parameters. The achieved selectivity ranges from 0.4 to 25.2 thus providing an effective means for the control of surface roughness of Si during the oxide layer removal, which is required for many advance applications in bio- and nanotechnology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This contribution provides arguments why and in which cases low-temperature plasmas should be used for nanoscale surface and interface engineering and discusses several advantages offered by plasma-based processes and tools compared to neutral gas fabrication routes. Relevant processes involve nanotexturing (etching, sputtering, nanostructuring, pre-patterning, etc.) and composition/structure control at nanoscales (phases, layering, elemental presence, doping, functionalization, etc.) and complex combinations thereof. A case study in p-Si/n-Si solar cell junction exemplifies a successful use of inductively coupled plasma-assisted RF magnetron sputtering for nanoscale fabrication of a bi-layered stack of unconventionally doped highly-crystalline silicon nanofilms with engineered high-quality interfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new source of low-frequency (0.46 MHz) inductively coupled plasmas sustained by the internal planar "unidirectional" RF current driven through a specially designed internal antenna configuration has been developed. The experimental results of the investigation of the optical and global argon plasma parameters by the optical and Langmuir probes are presented. It is shown that the spatial profiles of the electron density, the effective electron temperature and plasma potential feature a great deal of the radial and axial uniformity compared with conventional sources of inductively coupled plasmas with external at coil configurations. The measurements also reveal a weak azimuthal dependence of the global plasma parameters at low values of the input RF power, which was earlier predicted theoretically. The azimuthal dependence of the global plasma parameters vanishes at high input RF powers. Moreover, under certain conditions, the plasma becomes unstable due to spontaneous transitions between low-density (electrostatic, E) and high-density (electromagnetic, H) operating modes. Excellent uniformity of high-density plasmas makes the plasma reactor promising for various plasma processing applications and surface engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To date, designed topologies for DC-AC inversion with both voltage-buck and boost capabilities are mainly focused on two-level circuitries with extensions to three-level possibilities left nearly unexplored. Contributing to this area of research, this paper presents the design of a number of viable buck-boost three-level inverters that can also support bidirectional power conversion. The proposed front-end circuitry is developed from the Cuk-derived buck-boost two-level inverter, and by using the "alternative phase opposition disposition" (APOD) modulation scheme, the buck-boost three-level inverters can perform distinct five-level line voltage and three-level phase voltage switching by simply controlling the active switches located in the designed voltage boost section of the circuits. As a cost saving option, one active switch can further be removed from the voltage-boost section of the circuits by simply re-routing the gating commands of the remaining switches without influencing the ac output voltage amplitude. To verify the validity of the proposed inverters, Matlab/PLECS simulations were performed before a laboratory prototype was implemented for experimental testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To date, designed topologies for DC-AC inversion with both voltage buck and boost capabilities are mainly focused on two-level circuitries with extensions to three-level possibilities left nearly unexplored. Contributing to this area of research, this paper presents the design of a number of viable buck-boost three-level inverters that can also support bidirectional power conversion. The proposed front-end circuitry is developed from the Cuk-derived buck-boost two-level inverter, and by using the ldquoalternative phase opposition dispositionrdquo modulation scheme, the buck-boost three-level inverters can perform distinct five-level line voltage and three-level phase voltage switching by simply controlling the active switches located in the designed voltage boost section of the circuits. As a cost saving option, one active switch can further be removed from the voltage boost section of the circuits by simply rerouting the gating commands of the remaining switches without influencing the AC output voltage amplitude. To verify the validity of the proposed inverters, MATLAB/PLECS simulations were performed before a laboratory prototype was implemented for experimental testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Negative ions and negatively charged micro- to nano-meter sized dust grains are ubiquitous in astrophysical as well as industrial processing plasmas. The negative ions can appear in electro-negative plasmas as a result of elementary processes such as dissociative or non-dissociative electron attachment to neutrals. They are usually rather small in number, and in general do not affect the overall plasma behavior. On the other hand, since the dust grains are almost always highly negative, even in small numbers they can take up a considerable proportion of the total negative charge in the system. The presence of dusts can affect the characteristics of most collective processes of the plasma since the charge balance in both the steady and dynamic states can be significantly altered. Another situation that often occurs is that the electron number density becomes small because of their absorption by the dust grains or the discharge walls. In this case the negative ions in the plasma can play a very important role. Here, a self-consistent theory of linear waves in complex laboratory plasmas containing dust grains and negative ions is presented. A comprehensive model for such plasmas including source and sink effects associated with the presence of dust grains and negative ions is introduced. The stationary state of the plasma as well as the dispersion and damping characteristics of the waves are investigated. All relevant processes, such as ionization, diffusion, electron attachment, negative-positive ion recombination, dust charge relaxation, and dissipation due to electron and ion elastic collisions with neutrals and dust particles, as well as charging collisions with the dusts, are taken into consideration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the renewable energy sources whose outputs vary continuously, a Z-source current-type inverter has been proposed as a possible buck-boost alternative for grid-interfacing. With a unique X-shaped LC network connected between its dc power source and inverter topology, Z-source current-type inverter is however expected to suffer from compounded resonant complications in addition to those associated with its second-order output filter. To improve its damping performance, this paper proposes the careful integration of Posicast or three-step compensators before the inverter pulse-width modulator for damping triggered resonant oscillations. In total, two compensators are needed for wave-shaping the inverter boost factor and modulation ratio, and they can conveniently be implemented using first-in first-out stacks and embedded timers of modern digital signal processors widely used in motion control applications. Both techniques are found to damp resonance of ac filter well, but for cases of transiting from current-buck to boost state, three-step technique is less effective due to the sudden intermediate discharging interval introduced by its non-monotonic stepping (unlike the monotonic stepping of Posicast damping). These findings have been confirmed both in simulations and experiments using an implemented laboratory prototype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the design of a dual Z-source inverter that can be used with either a single dc source or two isolated dc sources. Unlike traditional inverters, the integration of a properly designed Z-source network and semiconductor switches to the proposed dual inverter allows buck-boost power conversion to be performed over a wide modulation range with three-level output waveforms generated. The connection of an additional transformer to the inverter ac output also allows all generic wye- or delta-connected loads with three-wire or four-wire configuration to be supplied by the inverter. Modulation-wise, the dual inverter can be controlled using a carefully designed carrier-based pulse-width modulation (PWM) scheme that always will ensure balanced voltage boosting of the Z-source network, while simultaneously achieving reduced common-mode switching. Because of the omission of dead-time delays in the dual inverter PWM scheme, its switched common-mode voltage can be completely eliminated, unlike in traditional inverters where narrow common-mode spikes are still generated. Under semiconductor failure conditions, the presented PWM schemes can easily be modified to allow the inverter to operate without interruption and for cases where two isolated sources are used, zero common-mode voltage can still be ensured. These theoretical findings together with the inverter practicality have been confirmed both in simulations using PSIM with Matlab/Simulink coupler and experimentally using a laboratory implemented inverter prototype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the design of a dual Z-source inverter that can be used with either a single dc source or two isolated dc sources. Unlike traditional inverters, the integration of a properly designed Z-source network and semiconductor switches to the proposed dual inverter allows buck-boost power conversion to be performed over a wide modulation range, with three-level output waveforms generated. The connection of an additional transformer to the inverter ac output also allows all generic wye-or delta-connected loads with three-wire or four-wire configuration to be supplied by the inverter. Modulationwise, the dual inverter can be controlled using a carefully designed carrier-based pulsewidth-modulation (PWM) scheme that will always ensure balanced voltage boosting of the Z-source network while simultaneously achieving reduced common-mode switching. Because of the omission of dead-time delays in the dual-inverter PWM scheme, its switched common-mode voltage can be completely eliminated, unlike in traditional inverters, where narrow common-mode spikes are still generated. Under semiconductor failure conditions, the presented PWM schemes can easily be modified to allow the inverter to operate without interruption, and for cases where two isolated sources are used, zero common-mode voltage can still be ensured. These theoretical findings, together with the inverter practicality, have been confirmed in simulations both using PSIM with Matlab/Simulink coupler and experimentally using a laboratory-implemented inverter prototype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular interactions that underlie pathophysiological states are being elucidated using techniques that profile proteomicend points in cellular systems. Within the field of cancer research, protein interaction networks play pivotal roles in the establishment and maintenance of the hallmarks of malignancy, including cell division, invasion, and migration. Multiple complementary tools enable a multifaceted view of how signal protein pathway alterations contribute to pathophysiological states.One pivotal technique is signal pathway profiling of patient tissue specimens. This microanalysis technology provides a proteomic snapshot at one point in time of cells directly procured from the native context of a tumor micro environment. To study the adaptive patterns of signal pathway events over time, before and after experimental therapy, it is necessary to obtain biopsies from patients before, during, and after therapy. A complementary approach is the profiling of cultured cell lines with and without treatment. Cultured cell models provide the opportunity to study short-term signal changes occurring over minutes to hours. Through this type of system, the effects of particular pharmacological agents may be used to test the effects of signal pathway inhibition or activation on multiple endpoints within a pathway. The complexity of the data generated has necessitated the development of mathematical models for optimal interpretation of interrelated signaling pathways. In combination,clinical proteomic biopsy profiling, tissue culture proteomic profiling, and mathematical modeling synergistically enable a deeper understanding of how protein associations lead to disease states and present new insights into the design of therapeutic regimens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detection of faults in roller element bearing is a topic widely discussed in the scientific field. Bearings diagnostics is usually performed by analyzing experimental signals, almost always vibration signals, measured during operation. A number of signal processing techniques have been proposed and applied to measured vibrations. The diagnostic effectiveness of the techniques depends on their capacities and on the environmental conditions (i.e. environmental noise). The current trend, especially from an industrial point of view, is to couple the prognostics to the diagnostics. The realization of a prognostic procedure require the definition of parameters able to describe the bearing condition during its operation. Monitoring the values of these parameters during time allows to define their trends depending on the progress of the wear. In this way, a relation between the variation of the selected parameters and the wear progress, useful for diagnostics and prognostics of bearings in real industrial applications, can be established. In this paper, a laboratory test-rig designed to perform endurance tests on roller element bearing is presented. Since the test-rig has operated for a short time, only some preliminary available results are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monitoring of the integrity of rolling element bearings in the traction system of high speed trains is a fundamental operation in order to avoid catastrophic failures and to implement effective condition-based maintenance strategies. Diagnostics of rolling element bearings is usually based on vibration signal analysis by means of suitable signal processing techniques. The experimental validation of such techniques has been traditionally performed by means of laboratory tests on artificially damaged bearings, while their actual effectiveness in industrial applications, particularly in the field of rail transport, remains scarcely investigated. This paper will address the diagnostics of bearings taken from the service after a long term operation on a high speed train. These worn bearings have been installed on a test-rig, consisting of a complete full-scale traction system of a high speed train, able to reproduce the effects of wheel-track interaction and bogie-wheelset dynamics. The results of the experimental campaign show that suitable signal processing techniques are able to diagnose bearing failures even in this harsh and noisy application. Moreover, the most suitable location of the sensors on the traction system is also proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rolling element bearings are the most critical components in the traction system of high speed trains. Monitoring their integrity is a fundamental operation in order to avoid catastrophic failures and to implement effective condition based maintenance strategies. Generally, diagnostics of rolling element bearings is usually performed by analyzing vibration signals measured by accelerometers placed in the proximity of the bearing under investigation. Several papers have been published on this subject in the last two decades, mainly devoted to the development and assessment of signal processing techniques for diagnostics. The experimental validation of such techniques has been traditionally performed by means of laboratory tests on artificially damaged bearings, while their actual effectiveness in specific industrial applications, particularly in rail industry, remains scarcely investigated. This paper is aimed at filling this knowledge gap, by addressing the diagnostics of bearings taken from the service after a long term operation on the traction system of a high speed train. Moreover, in order to test the effectiveness of the diagnostic procedures in the environmental conditions peculiar to the rail application, a specific test-rig has been built, consisting of a complete full-scale train traction system, able to reproduce the effects of wheeltrack interaction and bogie-wheelset dynamics. The results of the experimental campaign show that suitable signal processing techniques are able to diagnose bearing failures even in this harsh and noisy application. Moreover, the most suitable location of the sensors on the traction system is proposed, in order to limit their number.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BRAF is one of the most commonly mutated proto-oncogenes and plays a significant role in the development of numerous cancers of high clinical impact. Due to the commonality of BRAF mutations, a number of BRAF inhibitors have been developed as tools in the management of patients with cancers dependent on the action of mutant BRAF to drive cellular proliferation. In this review, we examine the current state of clinical trials and laboratory research concerning BRAF inhibitors in development and available for clinical use. We contrast the effectiveness of type-I and type-II BRAF inhibitors, the former typically showing much more restricted inhibitory selectivity and greater patient response rates.