726 resultados para Additional somatosensory information
Resumo:
A total histological grade does not necessarily distinguish between different manifestations of cartilage damage or degeneration. An accurate and reliable histological assessment method is required to separate normal and pathological tissue within a joint during treatment of degenerative joint conditions and to sub-classify the latter in meaningful ways. The Modified Mankin method may be adaptable for this purpose. We investigated how much detail may be lost by assigning one composite score/grade to represent different degenerative components of the osteoarthritic condition. We used four ovine injury models (sham surgery, anterior cruciate ligament/medial collateral ligament instability, simulated anatomic anterior cruciate ligament reconstruction and meniscal removal) to induce different degrees and potentially 'types' (mechanisms) of osteoarthritis. Articular cartilage was systematically harvested, prepared for histological examination and graded in a blinded fashion using a Modified Mankin grading method. Results showed that the possible permutations of cartilage damage were significant and far more varied than the current intended use that histological grading systems allow. Of 1352 cartilage specimens graded, 234 different manifestations of potential histological damage were observed across 23 potential individual grades of the Modified Mankin grading method. The results presented here show that current composite histological grading may contain additional information that could potentially discern different stages or mechanisms of cartilage damage and degeneration in a sheep model. This approach may be applicable to other grading systems.
Resumo:
Information security has been recognized as a core requirement for corporate governance that is expected to facilitate not only the management of risks, but also as a corporate enabler that supports and contributes to the sustainability of organizational operations. In implementing information security, the enterprise information security policy is the set of principles and strategies that guide the course of action for the security activities and may be represented as a brief statement that defines program goals and sets information security and risk requirements. The enterprise information security policy (alternatively referred to as security policy in this paper) that represents the meta-policy of information security is an element of corporate ICT governance and is derived from the strategic requirements for risk management and corporate governance. Consistent alignment between the security policy and the other corporate business policies and strategies has to be maintained if information security is to be implemented according to evolving business objectives. This alignment may be facilitated by managing security policy alongside other corporate business policies within the strategic management cycle. There are however limitations in current approaches for developing and managing the security policy to facilitate consistent strategic alignment. This paper proposes a conceptual framework for security policy management by presenting propositions to positively affect security policy alignment with business policies and prescribing a security policy management approach that expounds on the propositions.
Resumo:
Data mining techniques extract repeated and useful patterns from a large data set that in turn are utilized to predict the outcome of future events. The main purpose of the research presented in this paper is to investigate data mining strategies and develop an efficient framework for multi-attribute project information analysis to predict the performance of construction projects. The research team first reviewed existing data mining algorithms, applied them to systematically analyze a large project data set collected by the survey, and finally proposed a data-mining-based decision support framework for project performance prediction. To evaluate the potential of the framework, a case study was conducted using data collected from 139 capital projects and analyzed the relationship between use of information technology and project cost performance. The study results showed that the proposed framework has potential to promote fast, easy to use, interpretable, and accurate project data analysis.
Resumo:
For many years, computer vision has lured researchers with promises of a low-cost, passive, lightweight and information-rich sensor suitable for navigation purposes. The prime difficulty in vision-based navigation is that the navigation solution will continually drift with time unless external information is available, whether it be cues from the appearance of the scene, a map of features (whether built online or known a priori), or from an externally-referenced sensor. It is not merely position that is of interest in the navigation problem. Attitude (i.e. the angular orientation of a body with respect to a reference frame) is integral to a visionbased navigation solution and is often of interest in its own right (e.g. flight control). This thesis examines vision-based attitude estimation in an aerospace environment, and two methods are proposed for constraining drift in the attitude solution; one through a novel integration of optical flow and the detection of the sky horizon, and the other through a loosely-coupled integration of Visual Odometry and GPS position measurements. In the first method, roll angle, pitch angle and the three aircraft body rates are recovered though a novel method of tracking the horizon over time and integrating the horizonderived attitude information with optical flow. An image processing front-end is used to select several candidate lines in a image that may or may not correspond to the true horizon, and the optical flow is calculated for each candidate line. Using an Extended Kalman Filter (EKF), the previously estimated aircraft state is propagated using a motion model and a candidate horizon line is associated using a statistical test based on the optical flow measurements and location of the horizon in the image. Once associated, the selected horizon line, along with the associated optical flow, is used as a measurement to the EKF. To evaluate the accuracy of the algorithm, two flights were conducted, one using a highly dynamic Uninhabited Airborne Vehicle (UAV) in clear flight conditions and the other in a human-piloted Cessna 172 in conditions where the horizon was partially obscured by terrain, haze and smoke. The UAV flight resulted in pitch and roll error standard deviations of 0.42° and 0.71° respectively when compared with a truth attitude source. The Cessna 172 flight resulted in pitch and roll error standard deviations of 1.79° and 1.75° respectively. In the second method for estimating attitude, a novel integrated GPS/Visual Odometry (GPS/VO) navigation filter is proposed, using a structure similar to a classic looselycoupled GPS/INS error-state navigation filter. Under such an arrangement, the error dynamics of the system are derived and a Kalman Filter is developed for estimating the errors in position and attitude. Through similar analysis to the GPS/INS problem, it is shown that the proposed filter is capable of recovering the complete attitude (i.e. pitch, roll and yaw) of the platform when subjected to acceleration not parallel to velocity for both the monocular and stereo variants of the filter. Furthermore, it is shown that under general straight line motion (e.g. constant velocity), only the component of attitude in the direction of motion is unobservable. Numerical simulations are performed to demonstrate the observability properties of the GPS/VO filter in both the monocular and stereo camera configurations. Furthermore, the proposed filter is tested on imagery collected using a Cessna 172 to demonstrate the observability properties on real-world data. The proposed GPS/VO filter does not require additional restrictions or assumptions such as platform-specific dynamics, map-matching, feature-tracking, visual loop-closing, gravity vector or additional sensors such as an IMU or magnetic compass. Since no platformspecific dynamics are required, the proposed filter is not limited to the aerospace domain and has the potential to be deployed in other platforms such as ground robots or mobile phones.
Resumo:
IT-supported field data management benefits on-site construction management by improving accessibility to the information and promoting efficient communication between project team members. However, most of on-site safety inspections still heavily rely on subjective judgment and manual reporting processes and thus observers’ experiences often determine the quality of risk identification and control. This study aims to develop a methodology to efficiently retrieve safety-related information so that the safety inspectors can easily access to the relevant site safety information for safer decision making. The proposed methodology consists of three stages: (1) development of a comprehensive safety database which contains information of risk factors, accident types, impact of accidents and safety regulations; (2) identification of relationships among different risk factors based on statistical analysis methods; and (3) user-specified information retrieval using data mining techniques for safety management. This paper presents an overall methodology and preliminary results of the first stage research conducted with 101 accident investigation reports.
Resumo:
This book examines diverse aspects of the social experiences and cultural practices of Lebanese migrants and their descendants in Australia. It is available at the Institute for Migration Studies for the prices listed below. To obtain any additional information about the book please contact the Institute.
Resumo:
Background The number of middle-aged working individuals being diagnosed with cancer is increasing and so too will disruptions to their employment. The aim of the Working After Cancer Study is to examine the changes to work participation in the 12 months following a diagnosis of primary colorectal cancer. The study will identify barriers to work resumption, describe limitations on workforce participation, and evaluate the influence of these factors on health-related quality of life. Methods/Design An observational population-based study has been designed involving 260 adults newly-diagnosed with colorectal cancer between January 2010 and September 2011 and who were in paid employment at the time they were diagnosed. These cancer cases will be compared to a nationally representative comparison group of 520 adults with no history of cancer from the general population. Eligible cases will have a histologically confirmed diagnosis of colorectal cancer and will be identified through the Queensland Cancer Registry. Data on the comparison group will be drawn from the Household, Income and Labour Dynamics in Australia (HILDA) Survey. Data collection for the cancer group will occur at 6 and 12 months after diagnosis, with work questions also asked about the time of diagnosis, while retrospective data on the comparison group will be come from HILDA Waves 2009 and 2010. Using validated instruments administered via telephone and postal surveys, data will be collected on socio-demographic factors, work status and circumstances, and health-related quality of life (HRQoL) for both groups while the cases will have additional data collected on cancer treatment and symptoms, work productivity and cancer-related HRQoL. Primary outcomes include change in work participation at 12 months, time to work re-entry, work limitations and change in HRQoL status. Discussion This study will address the reasons for work cessation after cancer, the mechanisms people use to remain working and existing workplace support structures and the implications for individuals, families and workplaces. It may also provide key information for governments on productivity losses.