599 resultados para Direct digital detector
Resumo:
Developed economies are moving from an economy of corporations to an economy of people. More than ever, people produce and share value amongst themselves, and create value for corporations through co-creation and by sharing their data. This data remains in the hands of corporations and governments, but people want to regain control. Digital identity 3.0 gives people that control, and much more. In this paper we describe a concept for a digital identity platform that substantially goes beyond common concepts providing authentication services. Instead, the notion of digital identity 3.0 empowers people to decide who creates, updates, reads and deletes their data, and to bring their own data into interactions with organisations, governments and peers. To the extent that the user allows, this data is updated and expanded based on automatic, integrated and predictive learning, enabling trusted third party providers (e.g., retailers, banks, public sector) to proactively provide services. Consumers can also add to their digital identity desired meta-data and attribute values allowing them to design their own personal data record and to facilitate individualised experiences. We discuss the essential features of digital identity 3.0, reflect on relevant stakeholders and outline possible usage scenarios in selected industries.
Resumo:
During everyday urban life, people spend time in public urban places waiting for specific events to occur. During these times, people sometimes tend to engage with their information and communication technology (ICT) devices in a way that shuts off interactions with collocated people. These devices could also be used to better connect with the urban space and collocated people within. This chapter presents and discusses the impact of three design interventions on the urban user experience enabling collocated people to share lightweight, non-privacy-sensitive data in the urban space. We investigate and discuss the impact on the urban experience under the notions of people, place, and technology with an emphasis on how the sharing of non-privacy-sensitive data can positively transform anonymous public urban places in various ways through anonymous digital augmentations.
Resumo:
Hand, foot and mouth disease (HFMD) is a contagious viral disease that frequently affects infants and children and present with blisters and flu-like symptoms. This disease is caused by a group of enteroviruses such as enterovirus 71 (EV71) and coxsackievirus A16 (CA16). However, unlike other HFMD causing enteroviruses, EV71 have also been shown to be associated with more severe clinical manifestation such as aseptic meningitis, brainstem and cerebellar encephalitis which may lead to cardiopulmonary failure and death. Clinically, HFMD caused by EV71 is indistinguishable from other HFMD causing enteroviruses such as CA16. Molecular diagnosis methods such as the use of real-time PCR has been used commonly for the identification of EV71. In this study, two platforms namely the real-time PCR and the droplet digital PCR were compared for the detection quantitation of known EV71 viral copy number. The results reveal accurate and consistent results between the two platforms. In summary, the droplet digital PCR was demonstrated to be a promising technology for the identification and quantitation of EV71 viral copy number.
Resumo:
The self-assembly of layered molybdenum disulfide–graphene (MoS2–Gr) and horseradish peroxidase (HRP) by electrostatic attraction into a novel hybrid nanomaterial (HRP–MoS2–Gr) is reported. The properties of the MoS2–Gr were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (TEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). UV–vis and Fourier transform infrared spectroscopy (FT-IR) indicate that the native structure of the HRP is maintained after the assembly, implying good biocompatibility of MoS2–Gr nanocomposite. Furthermore, the HRP–MoS2–Gr composite is utilized as a biosensor, which displays electrocatalytic activity to hydrogen peroxide (H2O2) with high sensitivity (679.7 μA mM−1 cm−2), wide linear range (0.2 μM–1.103 mM), low detection limit (0.049 μM), and fast amperometric response. In addition, the biosensor also exhibits strong anti-interference ability, satisfactory stability and reproducibility. These desirable electrochemical properties are attributed to the good biocompatibility and electron transport efficiency of the MoS2–Gr composite, as well as the high loading of HRP. Therefore, this biosensor is potentially suitable for H2O2 analysis in environmental, pharmaceutical, food or industrial applications.
Resumo:
Melt electrospinning and its additive manufacturing analogue, melt electrospinning writing (MEW), are two processes which can produce porous materials for applications where solvent toxicity and accumulation in solution electrospinning are problematic. This study explores the melt electrospinning of poly(ε-caprolactone) (PCL) scaffolds, specifically for applications in tissue engineering. The research described here aims to inform researchers interested in melt electrospinning about technical aspects of the process. This includes rapid fiber characterization using glass microscope slides, allowing influential processing parameters on fiber morphology to be assessed, as well as observed fiber collection phenomena on different collector substrates. The distribution and alignment of melt electrospun PCL fibers can be controlled to a certain degree using patterned collectors to create large numbers of scaffolds with shaped macroporous architectures. However, the buildup of residual charge in the collected fibers limits the achievable thickness of the porous template through such scaffolds. One challenge identified for MEW is the ability to control charge buildup so that fibers can be placed accurately in close proximity, and in many centimeter heights. The scale and size of scaffolds produced using MEW, however, indicate that this emerging process will fill a technological niche in biofabrication.
Resumo:
Visible light can drive esteri fi cation from aldehydes and alcohols using supported gold nanoparticles (Au/Al 2 O 3 ) as photo- catalysts at ambient temperatures. The gold nanoparticles (AuNPs) absorb visible light due to the localized surface plasmon resonance (LSPR) e ff ect, and the conduction electrons of the AuNPs gain the energy of the incident light. The energetic electrons, which concentrate at the NP surface, facilitate the activation of a range of aldehyde and alcohol substrates. The photocatalytic e ffi ciencies strongly depend on the Au loading, particle sizes of the AuNPs, irradiance, and wavelength of the light irradiation. Finally, a plausible reaction mechanism was proposed, and the Au/Al 2 O 3 catalysts can be reused several times without signi fi cantly losing activity. The knowledge acquired in this study may inspire further studies in new e ffi cient recyclable photocatalysts and a wide range of organic synthesis driven by sunlight.
Resumo:
Recent advances in direct-use plasmonic-metal nanoparticles (NPs) as photocatalysts to drive organic synthesis reactions under visible-light irradiation have attracted great interest. Plasmonic-metal NPs are characterized by their strong interaction with visible light through excitation of the localized surface plasmon resonance (LSPR). Herein, we review recent developments in direct photocatalysis using plasmonic-metal NPs and their applications. We focus on the role played by the LSPR of the metal NPs in catalyzing organic transformations and, more broadly, the role that light irradiation plays in catalyzing the reactions. Through this, the reaction mechanisms that these light-excited energetic electrons promote will be highlighted. This review will be of particular interest to researchers who are designing and fabricating new plasmonic-metal NP photocatalysts by identifying important reaction mechanisms that occur through light irradiation.
Resumo:
The production mechanism of OH radicals in a pulsed DC plasma jet is studied by a two-dimensional (2-D) plasma jet model and a one-dimensional (1-D) discharge model. For the plasma jet in the open air, electron-impact dissociation of H2O, electron neutralization of H2O+, as well as dissociation of H2O by O(1D) are found to be the main reactions to generate the OH species. The contribution of the dissociation of H2O by electron is more than the others. The additions of N2, O2, air, and H2O into the working gas increase the OH density outside the tube slightly, which is attributed to more electrons produced by Penning ionization. On the other hand, the additions of O2 and H2O into the working gas increase the OH density inside the tube substantially, which is attributed to the increased O (1D) and H2O concentration, respectively. The gas flow will transport high density OH out of the tube during pulse off period. It is also shown that the plasma chemistry and reactivity can be effectively controlled by the pulse numbers. These results are supported by the laser induced fluorescence measurements and are relevant to several applications of atmospheric-pressure plasmas in health care, medicine, and materials processing.
Resumo:
Large digital screens are becoming prevalent across today’s cities dispersing into everyday urban spaces such as public squares and cultural precincts. Examples, such as Federation Square, demonstrate the opportunities for using digital screens to create a sense of place and to add long-term social, cultural and economic value for citizens, who live and work in those precincts. However, the challenge of implementing digital screens in new urban developments is to ensure they respond appropriately to the physical and sociocultural environment in which they are placed. Considering the increasing rate at which digital screens are being embedded into public spaces, it is surprising that the programs running on these screens still seem to be stuck in the cinematic model. The availability of advanced networking and interaction technologies offers opportunities for information access that goes beyond free-to-air television and advertising. This chapter revisits the history and current state of digital screens in urban life and discusses a series of research studies that involve digital screens as interface between citizens and the city. Instead of focusing on technological concerns, the chapter presents a holistic analysis of these studies, with the aim to move towards a more comprehensive understanding of the sociocultural potential of this new media platform, and how the digital content is linked with the spatial quality of the physical space, as well as the place and role of digital screens within the smart city movement.
Resumo:
The increasing ubiquity and use of digital technologies across social and cultural life is a key challenge for educators engaged in helping students develop a range of literacies useful for school and beyond. Many young people's experience of communication and participation is now shaped by almost constant engagements with digital technologies and media, as well as with global digital cultures. This increasing access and use has given many young people the opportunity to engage deeply with global media cultures via popular music, television and film franchises, the worldwide computer games industry, or countless other subcultures that connect fans and interested others from around the world via the internet. 'Digital literacy' is often the term associated with the ability to traverse these, and other, online and offline worlds; the notion has long been synonymous with the idea that digital technologies now mediate perhaps a majority of our social interactions. These forms of engagement with the world have important implications for educators and school systems which have historically recognised only a very narrow set of legitimate literacies.
Resumo:
How is creative expression and communication extended among whole populations? What is the social and cultural value of this activity? What roles do formal agencies, community-based organisations and content producer networks play? Specifically, how do participatory media and arts projects and networks contribute to building this capacity in the contemporary communications environment? The latest issue of CSJ article in a special issue on “Broadening Digital Storytelling Horizons” edited by Burcu Simsek.
Resumo:
Greenhouse gas emissions and associated global climate change are a significant and growing concern for the world community. In order to improve building energy efficiency, the use of evaporative cooling systems is attracting growing attention. Using a climate assessment tool, the potential use of direct evaporative coolers over different Australian climates is evaluated. It is found that overall, the potential use of direct evaporative cooling is very significant in Australian climates. Among all the eight capital cities across Australia, except for Darwin, the need of hybrid cooling for other cities is found to be insignificant,and is less than 5% if appropriate air circulation is provided on hot/warm days. It is also found that the potential use of evaporative cooling can be significantly influenced by a change in the applications or design parameters. In Brisbane, it is estimated that with an increase of sensible cooling load from 30 W/m2 to 40 W/m2 in the conditioned space, the requirement in hours of hybrid cooling can increase significantly, from 4.06% to 14.89%.
Resumo:
The power to influence others in ever-expanding social networks in the new knowledge economy is tied to capabilities with digital media production. This chapter draws on research in elementary classrooms to examine the repertoires of cross-disciplinary knowledge that literacy learners need to produce innovative digital media via the “social web”. It focuses on the knowledge processes that occurred when elementary students engaged in multimodal text production with new digital media. It draws on Kalantzis and Cope’s (2008) heuristic for theorizing “Knowledge Processes” in the Learning by Design approach to pedagogy. Learners demonstrate eight “Knowledge Processes” across different subject domains, skills areas, and sensibilities. Drawing data from media-based lessons across several classroom and schools, this chapter examines what kinds of knowledge students utilize when they produce digital, multimodal texts in the classroom. The Learning by Design framework is used as an analytic tool to theorize how students learn when they engaged in a specific domain of learning – digital media production.