682 resultados para 751003 Visual communication
Resumo:
Objects in an environment are often encountered sequentially during spatial learning, forming a path along which object locations are experienced. The present study investigated the effect of spatial information conveyed through the path in visual and proprioceptive learning of a room-sized spatial layout, exploring whether different modalities differentially depend on the integrity of the path. Learning object locations along a coherent path was compared with learning them in a spatially random manner. Path integrity had little effect on visual learning, whereas learning with the coherent path produced better memory performance than random order learning for proprioceptive learning. These results suggest that path information has differential effects in visual and proprioceptive spatial learning, perhaps due to a difference in the way one establishes a reference frame for representing relative locations of objects.
Resumo:
It has been shown that spatial information can be acquired from both visual and nonvisual modalities. The present study explored how spatial information from vision and proprioception was represented in memory, investigating orientation dependence of spatial memories acquired through visual and proprioceptive spatial learning. Experiment 1 examined whether visual learning alone and proprioceptive learning alone yielded orientation-dependent spatial memory. Results showed that spatial memories from both types of learning were orientation dependent. Experiment 2 explored how different orientations of the same environment were represented when they were learned visually and proprioceptively. Results showed that both visually and proprioceptively learned orientations were represented in spatial memory, suggesting that participants established two different reference systems based on each type of learning experience and interpreted the environment in terms of these two reference systems. The results provide some initial clues to how different modalities make unique contributions to spatial representations.
Resumo:
Sensing the mental, physical and emotional demand of a driving task is of primary importance in road safety research and for effectively designing in-vehicle information systems (IVIS). Particularly, the need of cars capable of sensing and reacting to the emotional state of the driver has been repeatedly advocated in the literature. Algorithms and sensors to identify patterns of human behavior, such as gestures, speech, eye gaze and facial expression, are becoming available by using low cost hardware: This paper presents a new system which uses surrogate measures such as facial expression (emotion) and head pose and movements (intention) to infer task difficulty in a driving situation. 11 drivers were recruited and observed in a simulated driving task that involved several pre-programmed events aimed at eliciting emotive reactions, such as being stuck behind slower vehicles, intersections and roundabouts, and potentially dangerous situations. The resulting system, combining face expressions and head pose classification, is capable of recognizing dangerous events (such as crashes and near misses) and stressful situations (e.g. intersections and way giving) that occur during the simulated drive.
Resumo:
Employee engagement is linked to higher productivity, lower attrition, and improved organizational reputations resulting in increased focus and resourcing by managers to foster an engaged workforce. While drivers of employee engagement have been identified as perceived support, job characteristics, and value congruence, internal communication is theoretically suggested to be a key influence in both the process and maintenance of employee engagement efforts. However, understanding the mechanisms by which internal communication influences employee engagement has emerged as a key question in the literature. The purpose of this research is to investigate whether social factors, namely perceived support and identification, play a mediating role in the relationship between internal communication and engagement. To test the theoretical model, data are collected from 200 non-executive employees using an online self-administered survey. The study applies linear and mediated regression to the model and finds that organizations and supervisors should focus internal communication efforts toward building greater perceptions of support and stronger identification among employees in order to foster optimal levels of engagement.
Resumo:
In this paper we tackle the problem of finding an efficient signature verification scheme when the number of signatures is signi.- cantly large and the verifier is relatively weak. In particular, we tackle the problem of message authentication in many-to-one communication networks known as concast communication. The paper presents three signature screening algorithms for a variant of ElGamal-type digital signatures. The cost for these schemes is n applications of hash functions, 2n modular multiplications, and n modular additions plus the verification of one digital signature, where n is the number of signatures. The paper also presents a solution to the open problem of finding a fast screening signature for non-RSA digital signature schemes.
Resumo:
Previous behavioral studies reported a robust effect of increased naming latencies when objects to be named were blocked within semantic category, compared to items blocked between category. This semantic context effect has been attributed to various mechanisms including inhibition or excitation of lexico-semantic representations and incremental learning of associations between semantic features and names, and is hypothesized to increase demands on verbal self-monitoring during speech production. Objects within categories also share many visual structural features, introducing a potential confound when interpreting the level at which the context effect might occur. Consistent with previous findings, we report a significant increase in response latencies when naming categorically related objects within blocks, an effect associated with increased perfusion fMRI signal bilaterally in the hippocampus and in the left middle to posterior superior temporal cortex. No perfusion changes were observed in the middle section of the left middle temporal cortex, a region associated with retrieval of lexical-semantic information in previous object naming studies. Although a manipulation of visual feature similarity did not influence naming latencies, we observed perfusion increases in the perirhinal cortex for naming objects with similar visual features that interacted with the semantic context in which objects were named. These results provide support for the view that the semantic context effect in object naming occurs due to an incremental learning mechanism, and involves increased demands on verbal self-monitoring.
Resumo:
This paper investigates how neuronal activation for naming photographs of objects is influenced by the addition of appropriate colour or sound. Behaviourally, both colour and sound are known to facilitate object recognition from visual form. However, previous functional imaging studies have shown inconsistent effects. For example, the addition of appropriate colour has been shown to reduce antero-medial temporal activation whereas the addition of sound has been shown to increase posterior superior temporal activation. Here we compared the effect of adding colour or sound cues in the same experiment. We found that the addition of either the appropriate colour or sound increased activation for naming photographs of objects in bilateral occipital regions and the right anterior fusiform. Moreover, the addition of colour reduced left antero-medial temporal activation but this effect was not observed for the addition of object sound. We propose that activation in bilateral occipital and right fusiform areas precedes the integration of visual form with either its colour or associated sound. In contrast, left antero-medial temporal activation is reduced because object recognition is facilitated after colour and form have been integrated.
Resumo:
By virtue of its widespread afferent projections, perirhinal cortex is thought to bind polymodal information into abstract object-level representations. Consistent with this proposal, deficits in cross-modal integration have been reported after perirhinal lesions in nonhuman primates. It is therefore surprising that imaging studies of humans have not observed perirhinal activation during visual-tactile object matching. Critically, however, these studies did not differentiate between congruent and incongruent trials. This is important because successful integration can only occur when polymodal information indicates a single object (congruent) rather than different objects (incongruent). We scanned neurologically intact individuals using functional magnetic resonance imaging (fMRI) while they matched shapes. We found higher perirhinal activation bilaterally for cross-modal (visual-tactile) than unimodal (visual-visual or tactile-tactile) matching, but only when visual and tactile attributes were congruent. Our results demonstrate that the human perirhinal cortex is involved in cross-modal, visual-tactile, integration and, thus, indicate a functional homology between human and monkey perirhinal cortices.
Resumo:
To identify and categorize complex stimuli such as familiar objects or speech, the human brain integrates information that is abstracted at multiple levels from its sensory inputs. Using cross-modal priming for spoken words and sounds, this functional magnetic resonance imaging study identified 3 distinct classes of visuoauditory incongruency effects: visuoauditory incongruency effects were selective for 1) spoken words in the left superior temporal sulcus (STS), 2) environmental sounds in the left angular gyrus (AG), and 3) both words and sounds in the lateral and medial prefrontal cortices (IFS/mPFC). From a cognitive perspective, these incongruency effects suggest that prior visual information influences the neural processes underlying speech and sound recognition at multiple levels, with the STS being involved in phonological, AG in semantic, and mPFC/IFS in higher conceptual processing. In terms of neural mechanisms, effective connectivity analyses (dynamic causal modeling) suggest that these incongruency effects may emerge via greater bottom-up effects from early auditory regions to intermediate multisensory integration areas (i.e., STS and AG). This is consistent with a predictive coding perspective on hierarchical Bayesian inference in the cortex where the domain of the prediction error (phonological vs. semantic) determines its regional expression (middle temporal gyrus/STS vs. AG/intraparietal sulcus).
Resumo:
This research proposes the development of interfaces to support collaborative, community-driven inquiry into data, which we refer to as Participatory Data Analytics. Since the investigation is led by local communities, it is not possible to anticipate which data will be relevant and what questions are going to be asked. Therefore, users have to be able to construct and tailor visualisations to their own needs. The poster presents early work towards defining a suitable compositional model, which will allow users to mix, match, and manipulate data sets to obtain visual representations with little-to-no programming knowledge. Following a user-centred design process, we are subsequently planning to identify appropriate interaction techniques and metaphors for generating such visual specifications on wall-sized, multi-touch displays.
Resumo:
This paper outlines the progress by the JoMeC (Journalism, Media & Communication) Network in developing TLO (Threshold Learning Outcome) statements for Bachelor-level university programs in the disciplines of Journalism, Public Relations and Media & Communications Studies. The paper presents the finalised TLO statement for Journalism, and outlines moves to engage discipline-based groups to further develop preliminary TLOs for Public Relations and Media & Communication Studies. The JoMeC Network was formed in 2011, in response to requirements that from 2014 all degrees and qualifications at Australian universities would be able to demonstrate that they comply with the threshold learning standards set by the Australian Qualifications Framework (AQF). The AQF’s threshold standards define the minimum types and levels of knowledge, skills and capabilities that a student must demonstrate in order to graduate. The Tertiary Education Quality and Standards Agency (TEQSA) will use the AQF’s threshold standards as a key tool in recording and assessing the performance of higher educational institutions, and determining whether they should be registered as Australian Higher Education Providers under the Higher Education Standards Framework. The Office of Learning & Teaching (OLT) places the onus on discipline communities to collaborate in order to develop and ‘own’ the threshold learning standards that can be considered the minimum learning outcomes of university-level programs in that field. With the support of an OLT Grant, the JoMeC Network’s prime goal has been to develop three sets of discipline-specific TLOs – one each for the Journalism, Public Relations, and Media & Communications Studies disciplines. This paper describes the processes of research, consultation, drafting and ongoing revision of the TLO for Journalism. It outlines the processes that the JoMeC Network has taken in developing a preliminary TLO draft to initiate discussion of Public Relations and Media & Communication Studies. The JoMeC Network plans to hand management of further development of these TLOs to scholars within the discipline who will engage with academics and other stakeholders to develop statements that the respective disciplines can embrace and ‘own’.
Resumo:
This paper provides a preliminary analysis of an autonomous uncooperative collision avoidance strategy for unmanned aircraft using image-based visual control. Assuming target detection, the approach consists of three parts. First, a novel decision strategy is used to determine appropriate reference image features to track for safe avoidance. This is achieved by considering the current rules of the air (regulations), the properties of spiral motion and the expected visual tracking errors. Second, a spherical visual predictive control (VPC) scheme is used to guide the aircraft along a safe spiral-like trajectory about the object. Lastly, a stopping decision based on thresholding a cost function is used to determine when to stop the avoidance behaviour. The approach does not require estimation of range or time to collision, and instead relies on tuning two mutually exclusive decision thresholds to ensure satisfactory performance.
Resumo:
This paper presents a 100 Hz monocular position based visual servoing system to control a quadrotor flying in close proximity to vertical structures approximating a narrow, locally linear shape. Assuming the object boundaries are represented by parallel vertical lines in the image, detection and tracking is achieved using Plücker line representation and a line tracker. The visual information is fused with IMU data in an EKF framework to provide fast and accurate state estimation. A nested control design provides position and velocity control with respect to the object. Our approach is aimed at high performance on-board control for applications allowing only small error margins and without a motion capture system, as required for real world infrastructure inspection. Simulated and ground-truthed experimental results are presented.
Resumo:
We have developed a Hierarchical Look-Ahead Trajectory Model (HiLAM) that incorporates the firing pattern of medial entorhinal grid cells in a planning circuit that includes interactions with hippocampus and prefrontal cortex. We show the model’s flexibility in representing large real world environments using odometry information obtained from challenging video sequences. We acquire the visual data from a camera mounted on a small tele-operated vehicle. The camera has a panoramic field of view with its focal point approximately 5 cm above the ground level, similar to what would be expected from a rat’s point of view. Using established algorithms for calculating perceptual speed from the apparent rate of visual change over time, we generate raw dead reckoning information which loses spatial fidelity over time due to error accumulation. We rectify the loss of fidelity by exploiting the loop-closure detection ability of a biologically inspired, robot navigation model termed RatSLAM. The rectified motion information serves as a velocity input to the HiLAM to encode the environment in the form of grid cell and place cell maps. Finally, we show goal directed path planning results of HiLAM in two different environments, an indoor square maze used in rodent experiments and an outdoor arena more than two orders of magnitude larger than the indoor maze. Together these results bridge for the first time the gap between higher fidelity bio-inspired navigation models (HiLAM) and more abstracted but highly functional bio-inspired robotic mapping systems (RatSLAM), and move from simulated environments into real-world studies in rodent-sized arenas and beyond.