531 resultados para PKC[bêta]1


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Risk-stratification of diffuse large B-cell lymphoma (DLBCL) requires identification of patients with disease that is not cured despite initial R-CHOP. Although the prognostic importance of the tumour microenvironment (TME) is established, the optimal strategy to quantify it is unknown. Methods The relationship between immune-effector and inhibitory (checkpoint) genes was assessed by NanoString™ in 252 paraffin-embedded DLBCL tissues. A model to quantify net anti-tumoural immunity as an outcome predictor was tested in 158 R-CHOP treated patients, and validated in tissue/blood from two independent R-CHOP treated cohorts of 233 and 140 patients respectively. Findings T and NK-cell immune-effector molecule expression correlated with tumour associated macrophage and PD-1/PD-L1 axis markers consistent with malignant B-cells triggering a dynamic checkpoint response to adapt to and evade immune-surveillance. A tree-based survival model was performed to test if immune-effector to checkpoint ratios were prognostic. The CD4*CD8:(CD163/CD68)*PD-L1 ratio was better able to stratify overall survival than any single or combination of immune markers, distinguishing groups with disparate 4-year survivals (92% versus 47%). The immune ratio was independent of and added to the revised international prognostic index (R-IPI) and cell-of-origin (COO). Tissue findings were validated in 233 DLBCL R-CHOP treated patients. Furthermore, within the blood of 140 R-CHOP treated patients immune-effector:checkpoint ratios were associated with differential interim-PET/CT+ve/-ve expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim To describe glycaemia in both breastfeeding women and artificially feeding women with Type 1 diabetes, and the changes in glycaemia induced by suckling. Methods A blinded continuous glucose monitor was applied for up to 6 days in eight breastfeeding and eight artificially feeding women with Type 1 diabetes 2–4 months postpartum. Women recorded glucose levels, insulin dosages, oral intake and breastfeeding episodes. A standardized breakfast was consumed on 2 days. A third group (clinic controls) were identified from a historical database. Results Carbohydrate intake tended to be higher in breastfeeding than artificially feeding women (P = 0.09) despite similar insulin requirements. Compared with breastfeeding women, the high blood glucose index and standard deviation of glucose were higher in artificially feeding women (P = 0.02 and 0.06, respectively) and in the clinical control group (P = 0.02 and 0.05, respectively). The low blood glucose index and hypoglycaemia were similar. After suckling, the low blood glucose index increased compared with before (P < 0.01) and during (P < 0.01) suckling. Hypoglycaemia (blood glucose < 4.0 mmol/l) occurred within 3 h of suckling in 14% of suckling episodes, and was associated with time from last oral intake (P = 0.04) and last rapid-acting insulin (P = 0.03). After a standardized breakfast, the area under the glucose curve was positive. In breastfeeding women the area under the glucose curve was positive if suckling was avoided for 1 h after eating and negative if suckling occurred within 30 min of eating. Conclusions Breastfeeding women with Type 1 diabetes had similar hypoglycaemia but lower glucose variability than artificially feeding women. Suckling reduced maternal glucose levels but did not cause hypoglycaemia in most episodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent reports provide evidence that the epithelial-to-mesenchymal transition (EMT) plays a key role in prostate cancer (PCa) metastasis and therapy resistance. We have recently identified the cell surface receptor, Neuropilin-1 (NRP1) to be increased during epithelial-mesenchymal transition (EMT) and this study aims to determine whether the inhibition of NRP1 will be a feasible therapeutic strategy for blocking PCa metastasis and therapy resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactivation of androgen receptor signalling is one of the hallmarks of prostate cancer progression to the terminal castrate resistant stage. A better understanding of mechanisms driving this adaptive response is essential for the development of innovative intervention strategies that effectively delay or halt prostate cancer progression. The Y-box binding protein 1 (YB-1) has been found to be closely associated with prostate cancer progression. By characterising its role in the adaptive process leading to castrate resistance, we aim to promote YB-1 as a novel therapeutic target in advanced prostate cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caveolae have been linked to diverse cellular functions and to many disease states. In this study we have used zebrafish to examine the role of caveolin-1 and caveolae during early embryonic development. During development, expression is apparent in a number of tissues including Kupffer's vesicle, tailbud, intersomite boundaries, heart, branchial arches, pronephric ducts and periderm. Particularly strong expression is observed in the sensory organs of the lateral line, the neuromasts and in the notochord where it overlaps with expression of caveolin-3. Morpholino-mediated downregulation of Cav1α caused a dramatic inhibition of neuromast formation. Detailed ultrastructural analysis, including electron tomography of the notochord, revealed that the central regions of the notochord has the highest density of caveolae of any embryonic tissue comparable to the highest density observed in any vertebrate tissue. In addition, Cav1α downregulation caused disruption of the notochord, an effect that was enhanced further by Cav3 knockdown. These results indicate an essential role for caveolin and caveolae in this vital structural and signalling component of the embryo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laskowski inhibitors regulate serine proteases by an intriguing mode of action that involves deceiving the protease into synthesizing a peptide bond. Studies exploring naturally occurring Laskowski inhibitors have uncovered several structural features that convey the inhibitor's resistance to hydrolysis and exceptional binding affinity. However, in the context of Laskowski inhibitor engineering, the way that various modifications intended to fine-tune an inhibitor's potency and selectivity impact on its association and dissociation rates remains unclear. This information is important as Laskowski inhibitors are becoming increasingly used as design templates to develop new protease inhibitors for pharmaceutical applications. In this study, we used the cyclic peptide, sunflower trypsin inhibitor-1 (SFTI-1), as a model system to explore how the inhibitor's sequence and structure relate to its binding kinetics and function. Using enzyme assays, MD simulations and NMR spectroscopy to study SFTI variants with diverse sequence and backbone modifications, we show that the geometry of the binding loop mainly influences the inhibitor's potency by modulating the association rate, such that variants lacking a favourable conformation show dramatic losses in activity. Additionally, we show that the inhibitor's sequence (including both the binding loop and its scaffolding) influences its potency and selectivity by modulating both the association and the dissociation rates. These findings provide new insights into protease inhibitor function and design that we apply by engineering novel inhibitors for classical serine proteases, trypsin and chymotrypsin and two kallikrein-related peptidases (KLK5 and KLK14) that are implicated in various cancers and skin diseases.