639 resultados para Information Organization
Resumo:
Background This paper presents a novel approach to searching electronic medical records that is based on concept matching rather than keyword matching. Aim The concept-based approach is intended to overcome specific challenges we identified in searching medical records. Method Queries and documents were transformed from their term-based originals into medical concepts as defined by the SNOMED-CT ontology. Results Evaluation on a real-world collection of medical records showed our concept-based approach outperformed a keyword baseline by 25% in Mean Average Precision. Conclusion The concept-based approach provides a framework for further development of inference based search systems for dealing with medical data.
Resumo:
Denaturation of tissues can provide a unique biological environment for regenerative medicine application only if minimal disruption of their microarchitecture is achieved during the decellularization process. The goal is to keep the structural integrity of such a construct as functional as the tissues from which they were derived. In this work, cartilage-on-bone laminates were decellularized through enzymatic, non-ionic and ionic protocols. This work investigated the effects of decellularization process on the microarchitecture of cartiligous extracellular matrix; determining the extent of how each process deteriorated the structural organization of the network. High resolution microscopy was used to capture cross-sectional images of samples prior to and after treatment. The variation of the microarchitecture was then analysed using a well defined fast Fourier image processing algorithm. Statistical analysis of the results revealed how significant the alternations among aforementioned protocols were (p < 0.05). Ranking the treatments by their effectiveness in disrupting the ECM integrity, they were ordered as: Trypsin> SDS> Triton X-100.
Resumo:
Tissue-specific extracellular matrix (ECM) is known to be an ideal bioscaffold to inspire the future of regenerative medicine. It holds the secret of how nature has developed such an organization of molecules into a unique functional complexity. This work exploited an innovative image processing algorithm and high resolution microscopy associated with mechanical analysis to establish a correlation between the gradient organization of cartiligous ECM and its anisotropic biomechanical response. This was hypothesized to be a reliable determinant that can elucidate how microarchitecture interrelates with biomechanical properties. Hough-Radon transform of the ECM cross-section images revealed its conformational variation from tangential interface down to subchondral region. As the orientation varied layer by layer, the anisotropic mechanical response deviated relatively. Although, results were in good agreement (Kendall's tau-b > 90%), there were evidences proposing that alignment of the fibrous network, specifically in middle zone, is not as random as it was previously thought.
Resumo:
Nowadays, Workflow Management Systems (WfMSs) and, more generally, Process Management Systems (PMPs) are process-aware Information Systems (PAISs), are widely used to support many human organizational activities, ranging from well-understood, relatively stable and structures processes (supply chain management, postal delivery tracking, etc.) to processes that are more complicated, less structured and may exhibit a high degree of variation (health-care, emergency management, etc.). Every aspect of a business process involves a certain amount of knowledge which may be complex depending on the domain of interest. The adequate representation of this knowledge is determined by the modeling language used. Some processes behave in a way that is well understood, predictable and repeatable: the tasks are clearly delineated and the control flow is straightforward. Recent discussions, however, illustrate the increasing demand for solutions for knowledge-intensive processes, where these characteristics are less applicable. The actors involved in the conduct of a knowledge-intensive process have to deal with a high degree of uncertainty. Tasks may be hard to perform and the order in which they need to be performed may be highly variable. Modeling knowledge-intensive processes can be complex as it may be hard to capture at design-time what knowledge is available at run-time. In realistic environments, for example, actors lack important knowledge at execution time or this knowledge can become obsolete as the process progresses. Even if each actor (at some point) has perfect knowledge of the world, it may not be certain of its beliefs at later points in time, since tasks by other actors may change the world without those changes being perceived. Typically, a knowledge-intensive process cannot be adequately modeled by classical, state of the art process/workflow modeling approaches. In some respect there is a lack of maturity when it comes to capturing the semantic aspects involved, both in terms of reasoning about them. The main focus of the 1st International Workshop on Knowledge-intensive Business processes (KiBP 2012) was investigating how techniques from different fields, such as Artificial Intelligence (AI), Knowledge Representation (KR), Business Process Management (BPM), Service Oriented Computing (SOC), etc., can be combined with the aim of improving the modeling and the enactment phases of a knowledge-intensive process. The 1st International Workshop on Knowledge-intensive Business process (KiBP 2012) was held as part of the program of the 2012 Knowledge Representation & Reasoning International Conference (KR 2012) in Rome, Italy, in June 2012. The workshop was hosted by the Dipartimento di Ingegneria Informatica, Automatica e Gestionale Antonio Ruberti of Sapienza Universita di Roma, with financial support of the University, through grant 2010-C26A107CN9 TESTMED, and the EU Commission through the projects FP7-25888 Greener Buildings and FP7-257899 Smart Vortex. This volume contains the 5 papers accepted and presented at the workshop. Each paper was reviewed by three members of the internationally renowned Program Committee. In addition, a further paper was invted for inclusion in the workshop proceedings and for presentation at the workshop. There were two keynote talks, one by Marlon Dumas (Institute of Computer Science, University of Tartu, Estonia) on "Integrated Data and Process Management: Finally?" and the other by Yves Lesperance (Department of Computer Science and Engineering, York University, Canada) on "A Logic-Based Approach to Business Processes Customization" completed the scientific program. We would like to thank all the Program Committee members for the valuable work in selecting the papers, Andrea Marrella for his valuable work as publication and publicity chair of the workshop, and Carola Aiello and the consulting agency Consulta Umbria for the organization of this successful event.
Resumo:
Information security has been recognized as a core requirement for corporate governance that is expected to facilitate not only the management of risks, but also as a corporate enabler that supports and contributes to the sustainability of organizational operations. In implementing information security, the enterprise information security policy is the set of principles and strategies that guide the course of action for the security activities and may be represented as a brief statement that defines program goals and sets information security and risk requirements. The enterprise information security policy (alternatively referred to as security policy in this paper) that represents the meta-policy of information security is an element of corporate ICT governance and is derived from the strategic requirements for risk management and corporate governance. Consistent alignment between the security policy and the other corporate business policies and strategies has to be maintained if information security is to be implemented according to evolving business objectives. This alignment may be facilitated by managing security policy alongside other corporate business policies within the strategic management cycle. There are however limitations in current approaches for developing and managing the security policy to facilitate consistent strategic alignment. This paper proposes a conceptual framework for security policy management by presenting propositions to positively affect security policy alignment with business policies and prescribing a security policy management approach that expounds on the propositions.
Resumo:
Data mining techniques extract repeated and useful patterns from a large data set that in turn are utilized to predict the outcome of future events. The main purpose of the research presented in this paper is to investigate data mining strategies and develop an efficient framework for multi-attribute project information analysis to predict the performance of construction projects. The research team first reviewed existing data mining algorithms, applied them to systematically analyze a large project data set collected by the survey, and finally proposed a data-mining-based decision support framework for project performance prediction. To evaluate the potential of the framework, a case study was conducted using data collected from 139 capital projects and analyzed the relationship between use of information technology and project cost performance. The study results showed that the proposed framework has potential to promote fast, easy to use, interpretable, and accurate project data analysis.
Resumo:
IT-supported field data management benefits on-site construction management by improving accessibility to the information and promoting efficient communication between project team members. However, most of on-site safety inspections still heavily rely on subjective judgment and manual reporting processes and thus observers’ experiences often determine the quality of risk identification and control. This study aims to develop a methodology to efficiently retrieve safety-related information so that the safety inspectors can easily access to the relevant site safety information for safer decision making. The proposed methodology consists of three stages: (1) development of a comprehensive safety database which contains information of risk factors, accident types, impact of accidents and safety regulations; (2) identification of relationships among different risk factors based on statistical analysis methods; and (3) user-specified information retrieval using data mining techniques for safety management. This paper presents an overall methodology and preliminary results of the first stage research conducted with 101 accident investigation reports.