594 resultados para Hughes, Patrick
Resumo:
A hippocampal-CA3 memory model was constructed with PGENESIS, a recently developed version of GENESIS that allows for distributed processing of a neural network simulation. A number of neural models of the human memory system have identified the CA3 region of the hippocampus as storing the declarative memory trace. However, computational models designed to assess the viability of the putative mechanisms of storage and retrieval have generally been too abstract to allow comparison with empirical data. Recent experimental evidence has shown that selective knock-out of NMDA receptors in the CA1 of mice leads to reduced stability of firing specificity in place cells. Here a similar reduction of stability of input specificity is demonstrated in a biologically plausible neural network model of the CA3 region, under conditions of Hebbian synaptic plasticity versus an absence of plasticity. The CA3 region is also commonly associated with seizure activity. Further simulations of the same model tested the response to continuously repeating versus randomized nonrepeating input patterns. Each paradigm delivered input of equal intensity and duration. Non-repeating input patterns elicited a greater pyramidal cell spike count. This suggests that repetitive versus non-repeating neocortical inpus has a quantitatively different effect on the hippocampus. This may be relevant to the production of independent epileptogenic zones and the process of encoding new memories.
Resumo:
Oscillations of neural activity may bind widespread cortical areas into a neural representation that encodes disparate aspects of an event. In order to test this theory we have turned to data collected from complex partial epilepsy (CPE) patients with chronically implanted depth electrodes. Data from regions critical to word and face information processing was analyzed using spectral coherence measurements. Similar analyses of intracranial EEG (iEEG) during seizure episodes display HippoCampal Formation (HCF)—NeoCortical (NC) spectral coherence patterns that are characteristic of specific seizure stages (Klopp et al. 1996). We are now building a computational memory model to examine whether spatio-temporal patterns of human iEEG spectral coherence emerge in a computer simulation of HCF cellular distribution, membrane physiology and synaptic connectivity. Once the model is reasonably scaled it will be used as a tool to explore neural parameters that are critical to memory formation and epileptogenesis.
Resumo:
Bats are an important component of mammalian biodiversity and fill such a wide array of ecological niches that they may offer an important multisensory bioindicator role in assessing ecosystem health. There is a need to monitor population trends of bats for their own sake because many populations face numerous environmental threats related to climate change, habitat loss, fragmentation, hunting, and emerging diseases. To be able to establish bat ultrasonic biodiversity trends as a reliable indicator, it is important to standardize monitoring protocols, data management, and analyses. This chapter discusses the main issues to be considered in developing a bat ultrasonic indicator. It focuses on the results from indicator bats program (iBats), a system for the global acoustic monitoring of bats, in Eastern Europe. Finally, the chapter reviews the strengths and weaknesses of the Program and considers the opportunities and threats that it may face in the future.
Resumo:
Knowledge management (KM) strategy is the planned or actual coordination of a firm's major goals and learning in time; this coordination continually co-aligns the firm's knowledge-based resources with the environment. Based on the organic perspective of strategy, a KM performance evaluation approach should be able to 1) review the knowledge governance mechanisms and learning routines that underpin the KM strategy, as well as the performance outcomes driven by the strategy, and 2) predict the evolution of performance drivers and outcomes into the future to facilitate strategic planning. This study combined a survey study and a system dynamics (SD) simulation to demonstrate the transformation from a mechanistic to an organic perspective on KM strategy and performance evaluation. The survey study was conducted based on a sample of 143 construction contractors and used structural equation modeling (SEM) techniques to develop a KM performance index for reviewing the key elements that underpin KM strategy. The SD simulation predicted the development of KM strategy configurations and the evolution of KM performance over time. The organic KM performance evaluation approach demonstrated by this study has significant potential to improve the alignment of KM strategy within an increasingly dynamic business environment.
Resumo:
The Archean Hollandaire volcanogenic massive sulfide deposit is a felsic–siliciclastic VMS deposit located in the Murchison Domain of the Youanmi Terrane, Yilgarn Craton, Western Australia. It is hosted in a succession of turbidites, mudstones and coherent rhyodacite sills and has been metamorphosed to upper greenschist/lower amphibolite facies and includes a pervasive S1 deformational fabric. The coherent rhyodacitic sills are interpreted as syndepositional based on geochemical similarities with well-known VMS-associated felsic rocks and similar foliations to the metasediments. We offer several explanations for the absence of textural evidence (e.g. breccias) for syn-depositional origins: 1) the subaqueous sediments were dehydrated by long-lived magmatism such that no pore-water remained to drive quench fragmentation; 2) pore-space occlusion by burial and/or, 3) alteration overprinting and obscuring of primary breccias at contact margins. Mineralisation occurs by sub-seafloor replacement of original host rocks in two ore bodies, Hollandaire Main (~125 x >500 m and ~8 m thick) and Hollandaire West (~100 x 470 m and ~5 m thick), and occurs in three main textural styles, massive sulfides, which are exclusively hosted in turbidites and mudstones, and stringer and disseminated sulfides, which are also hosted in coherent rhyodacite. Most sulfides have textures consistent with remobilisation and recrystallisation. Hydrothermal metamorphism has altered the hangingwall and footwall to similar degrees, with significant gains in Mg, Mn and K and losses in Na, Ca and Sr. Garnet and staurolite porphyryoblasts also exhibit a footprint around mineralisation, extending up to 30 m both above and below the ore zone. High precision thermal ionisation mass spectrometry of zircons extracted from the coherent rhyodacite yield an age of 2759.5 ± 0.9 Ma, which along with geochemical comparisons, places the succession within the 2760–2735 Ma Greensleeves Formation of the Polelle Group of the Murchison Supergroup. Geochemical and geochronological evidence link the coherent rhyodacite sills to the Peter Well Granodiorite pluton ~2 km to the W, which acted as the heat engine driving hydrothermal circulation during VMS mineralisation. This study highlights the importance of both: detailed physical volcanological studies from which an accurate assessment of timing relationships, particularly the possibility of intrusions dismembering ore horizons, can be made; and identifying synvolcanic plutons and other similar suites, for VMS exploration targets in the Youanmi Terrane and worldwide.
Resumo:
Monogenetic volcanoes have long been regarded as simple in nature, involving single magma batches and uncomplicated evolutions; however, recent detailed research into individual centres is challenging that assumption. Mt Rouse (Kolor) is the volumetrically largest volcano in the monogenetic Newer Volcanics Province of southeast Australia. This study presents new major, trace and Sr–Nd–Pb isotope data for samples selected on the basis of a detailed stratigraphic framework analysis of the volcanic products from Mt Rouse. The volcano is the product of three magma batches geochemically similar to Ocean–Island basalts, featuring increasing LREE enrichment with each magma batch (batches A, B and C) but no evidence of crustal contamination; the Sr–Nd–Pb isotopes define two groupings. Modelling suggests that the magmas were sourced from a zone of partial melting crossing the lithosphere–asthenosphere boundary, with batch A forming a large volume partial melt in the deep lithosphere (1.7 GPa/55.5 km); and batches B and C from similar areas within the shallow asthenosphere (1.88 GPa/61 km and 1.94 GPa/63 km, respectively). The formation and extraction of these magmas may have been due to high deformation rates in the mantle caused by edge-driven convection and asthenospheric upwelling. The lithosphere– asthenosphere boundary is important with respect to NVP volcanism. An eruption chronology involves sequential eruption of magma batches A, C and B, followed by simultaneous eruption of batches A and B. Mt Rouse is a complex polymagmatic monogenetic volcano that illustrates the complexity of monogenetic volcanism and demonstrates the importance of combining detailed stratigraphic analysis alongside systematic geochemical sampling.
Resumo:
Due to their unobtrusive nature, vision-based approaches to tracking sports players have been preferred over wearable sensors as they do not require the players to be instrumented for each match. Unfortunately however, due to the heavy occlusion between players, variation in resolution and pose, in addition to fluctuating illumination conditions, tracking players continuously is still an unsolved vision problem. For tasks like clustering and retrieval, having noisy data (i.e. missing and false player detections) is problematic as it generates discontinuities in the input data stream. One method of circumventing this issue is to use an occupancy map, where the field is discretised into a series of zones and a count of player detections in each zone is obtained. A series of frames can then be concatenated to represent a set-play or example of team behaviour. A problem with this approach though is that the compressibility is low (i.e. the variability in the feature space is incredibly high). In this paper, we propose the use of a bilinear spatiotemporal basis model using a role representation to clean-up the noisy detections which operates in a low-dimensional space. To evaluate our approach, we used a fully instrumented field-hockey pitch with 8 fixed high-definition (HD) cameras and evaluated our approach on approximately 200,000 frames of data from a state-of-the-art real-time player detector and compare it to manually labeled data.
Resumo:
This paper presents a new metric, which we call the lighting variance ratio, for quantifying descriptors in terms of their variance to illumination changes. In many applications it is desirable to have descriptors that are robust to changes in illumination, especially in outdoor environments. The lighting variance ratio is useful for comparing descriptors and determining if a descriptor is lighting invariant enough for a given environment. The metric is analysed across a number of datasets, cameras and descriptors. The results show that the upright SIFT descriptor is typically the most lighting invariant descriptor.
Resumo:
This paper presents a framework for synchronising multiple triggered sensors with respect to a local clock using standard computing hardware. Providing sensor measurements with accurate and meaningful timestamps is important for many sensor fusion, state estimation and control applications. Accurately synchronising sensor timestamps can be performed with specialised hardware, however, performing sensor synchronisation using standard computing hardware and non-real-time operating systems is difficult due to inaccurate and temperature sensitive clocks, variable communication delays and operating system scheduling delays. Results show the ability of our framework to estimate time offsets to sub-millisecond accuracy. We also demonstrate how synchronising timestamps with our framework results in a tenfold reduction in image stabilisation error for a vehicle driving on rough terrain. The source code will be released as an open source tool for time synchronisation in ROS.
Resumo:
This paper reports on a collaborative research project between the Faculty of Health Sciences at the University of Ottawa, Triathlon Canada, and the Coaching Association of Canada (CAC). It was designed around a lifelong learner perspective and the Organization for Economic Cooperation and Development’s (OECD) qualifications system. In this paper, we first review the coach learning literature as it pertains to the CAC. We then highlight the background and perspective of a high performance director’s experience in designing and attempting to implement a novel coach education training program. In doing so we uncover the frustrations and tensions in trying to balance innovation with prescribed process and policy. We conclude by making suggestions for further research specifically focused on the background of the key agents involved with the design, implementation and administration of coach education training programs in the competition-development context of the NCCP.
Resumo:
We present an approach for detecting sensor spoofing attacks on a cyber-physical system. Our approach consists of two steps. In the first step, we construct a safety envelope of the system. Under nominal conditions (that is, when there are no attacks), the system always stays inside its safety envelope. In the second step, we build an attack detector: a monitor that executes synchronously with the system and raises an alarm whenever the system state falls outside the safety envelope. We synthesize safety envelopes using a modified machine learning procedure applied on data collected from the system when it is not under attack. We present experimental results that show effectiveness of our approach, and also validate the several novel features that we introduced in our learning procedure.
Resumo:
The design and fabrication of a proto-type four-rotor vertical take-off and landing (VTOL) aerial robot for use as indoor experimental robotics platform is presented. The flyer is termed an X4-flyer. A development of the dynamic model of the system is presented and a pilot augmentation control design is proposed.
Resumo:
During Pavlovian auditory fear conditioning a previously neutral auditory stimulus (CS) gains emotional significance through pairing with a noxious unconditioned stimulus (US). These associations are believed to be formed by way of plasticity at auditory input synapses on principal neurons in the lateral nucleus of the amygdala (LA). In order to begin to understand how fear memories are stored and processed by synaptic changes in the LA, we have quantified both the entire neural number and the sub-cellular structure of LA principal neurons.We first used stereological cell counting methods on Gimsa or GABA immunostained rat brain. We identified 60,322+/-1408 neurons in the LA unilaterally (n=7). Of these 16,917+/-471 were GABA positive. The intercalated nuclei were excluded from the counts and thus GABA cells are believed to represent GABAergic interneurons. The sub-nuclei of the LA were also independently counted. We then quantified the morphometric properties of in vitro electrophysiologically identified principal neurons of the LA, corrected for shrinkage in xyz planes. The total dendritic length was 9.97+/-2.57mm, with 21+/-4 nodes (n=6). Dendritic spine density was 0.19+/-0.03 spines/um (n=6). Intra-LA axon collaterals had a bouton density of 0.1+/-0.02 boutons/um (n=5). These data begin to reveal the finite cellular and sub-cellular processing capacity of the lateral amygdala, and should facilitate efforts to understand mechanisms of plasticity in LA.