626 resultados para loss, PBEE, PEER method, earthquake engineering
Resumo:
Time series classification has been extensively explored in many fields of study. Most methods are based on the historical or current information extracted from data. However, if interest is in a specific future time period, methods that directly relate to forecasts of time series are much more appropriate. An approach to time series classification is proposed based on a polarization measure of forecast densities of time series. By fitting autoregressive models, forecast replicates of each time series are obtained via the bias-corrected bootstrap, and a stationarity correction is considered when necessary. Kernel estimators are then employed to approximate forecast densities, and discrepancies of forecast densities of pairs of time series are estimated by a polarization measure, which evaluates the extent to which two densities overlap. Following the distributional properties of the polarization measure, a discriminant rule and a clustering method are proposed to conduct the supervised and unsupervised classification, respectively. The proposed methodology is applied to both simulated and real data sets, and the results show desirable properties.
Resumo:
Social networking sites (SNSs), with their large number of users and large information base, seem to be the perfect breeding ground for exploiting the vulnerabilities of people, who are considered the weakest link in security. Deceiving, persuading, or influencing people to provide information or to perform an action that will benefit the attacker is known as “social engineering.” Fraudulent and deceptive people use social engineering traps and tactics through SNSs to trick users into obeying them, accepting threats, and falling victim to various crimes such as phishing, sexual abuse, financial abuse, identity theft, and physical crime. Although organizations, researchers, and practitioners recognize the serious risks of social engineering, there is a severe lack of understanding and control of such threats. This may be partly due to the complexity of human behaviors in approaching, accepting, and failing to recognize social engineering tricks. This research aims to investigate the impact of source characteristics on users’ susceptibility to social engineering victimization in SNSs, particularly Facebook. Using grounded theory method, we develop a model that explains what and how source characteristics influence Facebook users to judge the attacker as credible.
Resumo:
In this paper the renormalization group (RG) method of Chen, Goldenfeld, and Oono [Phys. Rev. Lett., 73 (1994), pp.1311-1315; Phys. Rev. E, 54 (1996), pp.376-394] is presented in a pedagogical way to increase its visibility in applied mathematics and to argue favorably for its incorporation into the corresponding graduate curriculum.The method is illustrated by some linear and nonlinear singular perturbation problems. Key word. © 2012 Society for Industrial and Applied Mathematics.
Resumo:
This paper introduces a straightforward method to asymptotically solve a variety of initial and boundary value problems for singularly perturbed ordinary differential equations whose solution structure can be anticipated. The approach is simpler than conventional methods, including those based on asymptotic matching or on eliminating secular terms. © 2010 by the Massachusetts Institute of Technology.
Resumo:
This study demonstrates a novel method for testing the hypothesis that variations in primary and secondary particle number concentration (PNC) in urban air are related to residual fuel oil combustion at a coastal port lying 30 km upwind, by examining the correlation between PNC and airborne particle composition signatures chosen for their sensitivity to the elemental contaminants present in residual fuel oil. Residual fuel oil combustion indicators were chosen by comparing the sensitivity of a range of concentration ratios to airborne emissions originating from the port. The most responsive were combinations of vanadium and sulfur concentration ([S], [V]) expressed as ratios with respect to black carbon concentration ([BC]). These correlated significantly with ship activity at the port and with the fraction of time during which the wind blew from the port. The average [V] when the wind was predominantly from the port was 0.52 ng.m-3 (87%) higher than the average for all wind directions and 0.83 ng.m-3 (280%) higher than that for the lowest vanadium yielding wind direction considered to approximate the natural background. Shipping was found to be the main source of V impacting urban air quality in Brisbane. However, contrary to the stated hypothesis, increases in PNC related measures did not correlate with ship emission indicators or ship traffic. Hence at this site ship emissions were not found to be a major contributor to PNC compared to other fossil fuel combustion sources such as road traffic, airport and refinery emissions.
Resumo:
Reliable calculations of the electron/ion energy losses in low-pressure thermally nonequilibrium low-temperature plasmas are indispensable for predictive modeling related to numerous applications of such discharges. The commonly used simplified approaches to calculation of electron/ion energy losses to the chamber walls use a number of simplifying assumptions that often do not account for the details of the prevailing electron energy distribution function (EEDF) and overestimate the contributions of the electron losses to the walls. By direct measurements of the EEDF and careful calculation of contributions of the plasma electrons in low-pressure inductively coupled plasmas, it is shown that the actual losses of kinetic energy of the electrons and ions strongly depend on the EEDF. It is revealed that the overestimates of the total electron/ion energy losses to the walls caused by improper assumptions about the prevailing EEDF and about the ability of the electrons to pass through the repulsive potential of the wall may lead to significant overestimates that are typically in the range between 9 and 32%. These results are particularly important for the development of power-saving strategies for operation of low-temperature, low-pressure gas discharges in diverse applications that require reasonably low power densities. © 2008 American Institute of Physics.
Resumo:
We examine the effect of a kinetic undercooling condition on the evolution of a free boundary in Hele--Shaw flow, in both bubble and channel geometries. We present analytical and numerical evidence that the bubble boundary is unstable and may develop one or more corners in finite time, for both expansion and contraction cases. This loss of regularity is interesting because it occurs regardless of whether the less viscous fluid is displacing the more viscous fluid, or vice versa. We show that small contracting bubbles are described to leading order by a well-studied geometric flow rule. Exact solutions to this asymptotic problem continue past the corner formation until the bubble contracts to a point as a slit in the limit. Lastly, we consider the evolving boundary with kinetic undercooling in a Saffman--Taylor channel geometry. The boundary may either form corners in finite time, or evolve to a single long finger travelling at constant speed, depending on the strength of kinetic undercooling. We demonstrate these two different behaviours numerically. For the travelling finger, we present results of a numerical solution method similar to that used to demonstrate the selection of discrete fingers by surface tension. With kinetic undercooling, a continuum of corner-free travelling fingers exists for any finger width above a critical value, which goes to zero as the kinetic undercooling vanishes. We have not been able to compute the discrete family of analytic solutions, predicted by previous asymptotic analysis, because the numerical scheme cannot distinguish between solutions characterised by analytic fingers and those which are corner-free but non-analytic.
Resumo:
Fault identification in industrial machine is a topic of major importance under engineering point of view. In fact, the possibility to identify not only the type, but also the severity and the position of a fault occurred along a shaft-line allows quick maintenance and shorten the downtime. This is really important in the power generation industry where the units are often of several tenths of meters long and where the rotors are enclosed by heavy and pressure-sealed casings. In this paper, an industrial experimental case is presented related to the identification of the unbalance on a large size steam turbine of about 1.3 GW, belonging to a nuclear power plant. The case history is analyzed by considering the vibrations measured by the condition monitoring system of the unit. A model-based method in the frequency domain, developed by the authors, is introduced in detail and it is then used to identify the position of the fault and its severity along the shaft-line. The complete model of the unit (rotor – modeled by means of finite elements, bearings – modeled by linearized damping and stiffness coefficients and foundation – modeled by means of pedestals) is analyzed and discussed before being used for the fault identification. The assessment of the actual fault was done by inspection during a scheduled maintenance and excellent correspondence was found with the identified one by means of authors’ proposed method. Finally a complete discussion is presented about the effectiveness of the method, even in presence of a not fine tuned machine model and considering only few measuring planes for the machine vibration.
Resumo:
In the electricity market environment, load-serving entities (LSEs) will inevitably face risks in purchasing electricity because there are a plethora of uncertainties involved. To maximize profits and minimize risks, LSEs need to develop an optimal strategy to reasonably allocate the purchased electricity amount in different electricity markets such as the spot market, bilateral contract market, and options market. Because risks originate from uncertainties, an approach is presented to address the risk evaluation problem by the combined use of the lower partial moment and information entropy (LPME). The lower partial moment is used to measure the amount and probability of the loss, whereas the information entropy is used to represent the uncertainty of the loss. Electricity purchasing is a repeated procedure; therefore, the model presented represents a dynamic strategy. Under the chance-constrained programming framework, the developed optimization model minimizes the risk of the electricity purchasing portfolio in different markets because the actual profit of the LSE concerned is not less than the specified target under a required confidence level. Then, the particle swarm optimization (PSO) algorithm is employed to solve the optimization model. Finally, a sample example is used to illustrate the basic features of the developed model and method.
Resumo:
We have developed a Hierarchical Look-Ahead Trajectory Model (HiLAM) that incorporates the firing pattern of medial entorhinal grid cells in a planning circuit that includes interactions with hippocampus and prefrontal cortex. We show the model’s flexibility in representing large real world environments using odometry information obtained from challenging video sequences. We acquire the visual data from a camera mounted on a small tele-operated vehicle. The camera has a panoramic field of view with its focal point approximately 5 cm above the ground level, similar to what would be expected from a rat’s point of view. Using established algorithms for calculating perceptual speed from the apparent rate of visual change over time, we generate raw dead reckoning information which loses spatial fidelity over time due to error accumulation. We rectify the loss of fidelity by exploiting the loop-closure detection ability of a biologically inspired, robot navigation model termed RatSLAM. The rectified motion information serves as a velocity input to the HiLAM to encode the environment in the form of grid cell and place cell maps. Finally, we show goal directed path planning results of HiLAM in two different environments, an indoor square maze used in rodent experiments and an outdoor arena more than two orders of magnitude larger than the indoor maze. Together these results bridge for the first time the gap between higher fidelity bio-inspired navigation models (HiLAM) and more abstracted but highly functional bio-inspired robotic mapping systems (RatSLAM), and move from simulated environments into real-world studies in rodent-sized arenas and beyond.
Resumo:
A single plant cell was modeled with smoothed particle hydrodynamics (SPH) and a discrete element method (DEM) to study the basic micromechanics that govern the cellular structural deformations during drying. This two-dimensional particle-based model consists of two components: a cell fluid model and a cell wall model. The cell fluid was approximated to a highly viscous Newtonian fluid and modeled with SPH. The cell wall was treated as a stiff semi-permeable solid membrane with visco-elastic properties and modeled as a neo-Hookean solid material using a DEM. Compared to existing meshfree particle-based plant cell models, we have specifically introduced cell wall–fluid attraction forces and cell wall bending stiffness effects to address the critical shrinkage characteristics of the plant cells during drying. Also, a moisture domain-based novel approach was used to simulate drying mechanisms within the particle scheme. The model performance was found to be mainly influenced by the particle resolution, initial gap between the outermost fluid particles and wall particles and number of particles in the SPH influence domain. A higher order smoothing kernel was used with adaptive smoothing length to improve the stability and accuracy of the model. Cell deformations at different states of cell dryness were qualitatively and quantitatively compared with microscopic experimental findings on apple cells and a fairly good agreement was observed with some exceptions. The wall–fluid attraction forces and cell wall bending stiffness were found to be significantly improving the model predictions. A detailed sensitivity analysis was also done to further investigate the influence of wall–fluid attraction forces, cell wall bending stiffness, cell wall stiffness and the particle resolution. This novel meshfree based modeling approach is highly applicable for cellular level deformation studies of plant food materials during drying, which characterize large deformations.
Resumo:
The generation of a correlation matrix for set of genomic sequences is a common requirement in many bioinformatics problems such as phylogenetic analysis. Each sequence may be millions of bases long and there may be thousands of such sequences which we wish to compare, so not all sequences may fit into main memory at the same time. Each sequence needs to be compared with every other sequence, so we will generally need to page some sequences in and out more than once. In order to minimize execution time we need to minimize this I/O. This paper develops an approach for faster and scalable computing of large-size correlation matrices through the maximal exploitation of available memory and reducing the number of I/O operations. The approach is scalable in the sense that the same algorithms can be executed on different computing platforms with different amounts of memory and can be applied to different bioinformatics problems with different correlation matrix sizes. The significant performance improvement of the approach over previous work is demonstrated through benchmark examples.
Resumo:
Titanate nanotubes (TNT) supported AgI nanoparticles were prepared by a two-step method: the deposition of Ag2O on titanate nanotubes from AgNO3 solution and the subsequent I-adsorption process from NaI solution. It is found that the supported AgI samples exhibited excellent photoactivity for the selective oxidation of benzylamine to the corresponding imine under visible light illumination and the photocatalyst can be used for many times without apparent activity loss. X-ray diffraction studies, transmission electron microscopy, diffuse reflectance UV-Vis spectroscopy and nitrogen adsorption measurements were used for the characterization of the as-prepared and recycled AgI samples. It is found that under visible light irradiation, AgI partially decomposed to produce Ag/AgI nanostructure and thus stabilized. The photoactivity of supported Ag/AgI for the selective oxidation of benzylamine was studied in terms of the light intensity, wavelength, temperature and substituent. It is proposed that the formation of plasmonic Ag nanoparticles should be responsible for the high activity and selectivity.
Resumo:
This paper presents a new direct integration scheme for supercapacitors that are used to mitigate short term power fluctuations in wind power systems. The idea is to replace ordinary capacitors of a 3-level flying capacitor inverter by supercapacitors and operate them under variable voltage conditions. This approach eliminates the need of interfacing dc-dc converters for supercapacitor integration and thus considerably improves the overall efficiency. However, the major problem of this unique system is the change of supercapacitor voltages. An analysis on the effects of these voltage variations are presented. A space vector modulation method, built from the scratch, is proposed to generate undistorted current even in the presence of dynamic changes in supercapacitor voltages. A supercapacitor voltage equalisation algorithm is also proposed. Furthermore, resistive behavior of supercapacitors at high frequencies and the need for a low pass filter are highlighted. Simulation results are presented to verify the efficacy of the proposed system in suppressing short term wind power fluctuations.
Resumo:
The imprinted gene, neuronatin (NNAT), is one of the most abundant transcripts in the pituitary and is thought to be involved in the development and maturation of this gland. In a recent whole-genome approach, exploiting a pituitary tumour cell line, we identified hypermethylation associated loss of NNAT. In this report, we determined the expression pattern of NNAT in individual cell types of the normal gland and within each of the different pituitary adenoma subtypes. In addition, we determined associations between expression and CpG island methylation and used colony forming efficiency assays (CFE) to gain further insight into the tumour-suppressor function of this gene. Immunohistochemical (IHC) co-localization studies of normal pituitaries showed that each of the hormone secreting cells (GH, PRL, ACTH, FSH and TSH) expressed NNAT. However, 33 out of 47 adenomas comprising, 11 somatotrophinomas, 10 prolactinomas, 12 corticotrophinomas and 14 non-functioning tumours, irrespective of subtype failed to express either NNAT transcript or protein as determined by quantitative real-time RT-PCR and IHC respectively. In normal pituitaries and adenomas that expressed NNAT the promoter-associated CpG island showed characteristics of an imprinted gene where approximately 50% of molecules were densely methylated. However, in the majority of adenomas that showed loss or significantly reduced expression of NNAT, relative to normal pituitaries, the gene-associated CpG island showed significantly increased methylation. Induced expression of NNAT in transfected AtT-20 cells significantly reduced CFE. Collectively, these findings point to an important role for NNAT in the pituitary and perhaps tumour development in this gland.