614 resultados para Shortwave cloud radiative effect
Resumo:
Radiative and total heat transfer at the flow stagnation point of a 1:40.8 binary scaled model of the Titan Explorer vehicle were measured in the X3 expansion tube. Results from the current study illustrated that with the addition of CH4 into a N2 test gas radiative heat transfer could be detected. For a test gas of 5% CH4 and 95% N2, simulating an atmospheric model for Titanic aerocapture, approximately 4% of the experimentally measured total stagnation point heat transfer was found to be due to radiation. This was in comparison to < 1% measured for a test gas of pure nitrogen. When scaled to the flight vehicle, experimental results indicate a 64% contribution of radiation (test gas 5% CH4/95% N2). Previous numerical results however have predicted this contribution to be between 80-92%. Thus, experimental results from the current study suggest that numerical analyses are over-predicting the radiative heat transfer on the flight vehicle.
Resumo:
The current research extends our knowledge of the main effects of attitude, subjective norm, and perceived control over the individual’s technology adoption. We propose a critical buffering role of social influence on the collectivistic culture in the relationship between attitude, perceived behavioral control, and Information Technology (IT) adoption. Adoption behavior was studied among 132 college students being introduced to a new virtual learning system. While past research mainly treated these three variables as being in parallel relationships, we found a moderating role for subjective norm on technology attitude and perceived control on adoption intent. Implications and limitations for understating the role of social influence in the collectivistic society are discussed.
Resumo:
The placement of the mappers and reducers on the machines directly affects the performance and cost of the MapReduce computation in cloud computing. From the computational point of view, the mappers/reducers placement problem is a generalization of the classical bin packing problem, which is NP-complete. Thus, in this paper we propose a new heuristic algorithm for the mappers/reducers placement problem in cloud computing and evaluate it by comparing with other several heuristics on solution quality and computation time by solving a set of test problems with various characteristics. The computational results show that our heuristic algorithm is much more efficient than the other heuristics. Also, we verify the effectiveness of our heuristic algorithm by comparing the mapper/reducer placement for a benchmark problem generated by our heuristic algorithm with a conventional mapper/reducer placement. The comparison results show that the computation using our mapper/reducer placement is much cheaper while still satisfying the computation deadline.
Resumo:
MapReduce is a computation model for processing large data sets in parallel on large clusters of machines, in a reliable, fault-tolerant manner. A MapReduce computation is broken down into a number of map tasks and reduce tasks, which are performed by so called mappers and reducers, respectively. The placement of the mappers and reducers on the machines directly affects the performance and cost of the MapReduce computation. From the computational point of view, the mappers/reducers placement problem is a generation of the classical bin packing problem, which is NPcomplete. Thus, in this paper we propose a new grouping genetic algorithm for the mappers/reducers placement problem in cloud computing. Compared with the original one, our grouping genetic algorithm uses an innovative coding scheme and also eliminates the inversion operator which is an essential operator in the original grouping genetic algorithm. The new grouping genetic algorithm is evaluated by experiments and the experimental results show that it is much more efficient than four popular algorithms for the problem, including the original grouping genetic algorithm.
Resumo:
A Software-as-a-Service or SaaS can be delivered in a composite form, consisting of a set of application and data components that work together to deliver higher-level functional software. Components in a composite SaaS may need to be scaled – replicated or deleted, to accommodate the user’s load. It may not be necessary to replicate all components of the SaaS, as some components can be shared by other instances. On the other hand, when the load is low, some of the instances may need to be deleted to avoid resource underutilisation. Thus, it is important to determine which components are to be scaled such that the performance of the SaaS is still maintained. Extensive research on the SaaS resource management in Cloud has not yet addressed the challenges of scaling process for composite SaaS. Therefore, a hybrid genetic algorithm is proposed in which it utilises the problem’s knowledge and explores the best combination of scaling plan for the components. Experimental results demonstrate that the proposed algorithm outperforms existing heuristic-based solutions.
Resumo:
This study investigated the effect of a calcium phosphate (CaP) coating onto a polycaprolactone melt electrospun scaffold and in vitro culture conditions on ectopic bone formation in a subcutaneous rat model. The CaP coating resulted in an increased alkaline phosphatase activity (ALP) in ovine osteoblasts regardless of the culture conditions and this was also translated into higher levels of mineralisation. A subcutaneous implantation was performed and increasing ectopic bone formation was observed over time for the CaPcoated samples previously cultured in osteogenic media whereas the corresponding non-coated samples displayed a lag phase before bone formation occurred from 4 to 8 weeks post-implantation. Histology and immunohistochemistry revealed bone fill through the scaffolds 8 weeks post-implantation for coated and non-coated specimens and that ALP, osteocalcin and collagen 1 were present at the ossification front and in the bone tissues. Vascularisation in the vicinity of the bone tissues was also observed indicating that the newly formed bone was not deprived of oxygen and nutrients.We found that in vitro osteogenic induction was essential for achieving bone formation and CaP coating accelerated the osteogenic process. We conclude that high cell density and preservation of the collagenous and mineralised extracellular matrix secreted in vitro are factors of importance for ectopic bone formation.
Resumo:
This paper presents the details of experimental studies on the effect of real support conditions on the shear strength of LiteSteel beams (LSB). The LSB has a unique shape of a channel beam with two rectangular hollow flanges, made using a unique manufacturing process. In some applications in the building industry LSBs are used with only one web side plate (WSP) at their supports and are not used with full height web side plates (WSP) at their supports. Past research studies showed that theses real support connections did not provide simply supported conditions. Many studies have been carried out to evaluate the behaviour and design of LSBs with simply supported conditions subject to pure bending and predominant shear actions. To date, however, no investigation has been conducted into the effect of real support conditions on the shear strength of LSBs. Hence detailed experimental studies were undertaken to investigate the shear behaviour and strength of LSBs with real support conditions. A total of 28 experimental tests were conducted as part of the studies. Simply supported test specimens of LSBs with aspect ratios of 1.0 and 1.5 were loaded at mid-span until failure. It was found that the effect of using one WSP on the shear behaviour of LSB is significant and there is about 25% shear capacity reduction due to the lateral movement of the bottom flange at the supports. Shear capacity of LSB was also found to decrease when full height WSPs were not used. Suitable support connections were developed to improve the shear capacity of LSBs based on test results.
Resumo:
The processing of juice expressed from whole green sugarcane crop (stalk and trash) leads to poor clarification performance, reduced sugar yield and poor raw sugar quality. The cause of these adverse effects is linked to the disproportionate contribution of impurities from the trash component of the crop. This paper reports on the zeta (ζ) potential, average size distribution (d50) and fractal dimension (Df) of limed juice particles derived from various juice types using laser diffraction and dynamic light scattering techniques. The influence of non-sucrose impurities on the interactive energy contributions between sugarcane juice particles was examined on the basis of Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Results from these investigations have provided evidence (in terms of particle stability) on why juice particles derived from whole green sugarcane crop are relatively difficult to coagulate (and flocculate). The presence of trash reduces the van der Waals forces of attraction between particles, thereby reducing coagulation and flocculation processes. It is anticipated that further fundamental work will lead to strategies that could be adopted for clarifying juices expressed from whole green sugarcane crop.
Resumo:
The processing of juice expressed from whole green sugarcane crop (stalk and trash) leads to poor clarification performance, reduced sugar yield and poor raw sugar quality. The cause of these adverse effects is linked to the disproportionate contribution of impurities from the trash component of the crop. This paper reports on the zeta (?) potential, average size distribution (d50) and fractal dimension (Df) of limed juice particles derived from various juice types using laser diffraction and dynamic light scattering techniques. The influence of non-sucrose impurities on the interactive energy contributions between sugarcane juice particles was examined on the basis of Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Results from these investigations have provided evidence (in terms of particle stability) on why juice particles derived from whole green sugarcane crop are relatively difficult to coagulate (and flocculate). The presence of trash reduces the van der Waals forces of attraction between particles, thereby reducing coagulation and flocculation processes. It is anticipated that further fundamental work will lead to strategies that could be adopted for clarifying juices expressed from whole green sugarcane crop.
Resumo:
High power, high frequency pulsed electric fields known as pulsed power (PP) has been applied recently in biology and medicine. However, little attention has been paid to investigate the application of pulse power in musculoskeletal system and its possible effect on functional behavior and biomechanical properties of bone tissue. This paper presents the first research investigating whether or not PP can be applied safely on bone tissue as a stimuli and what will be the possible effect of these signals on the characteristics of cortical bone by comparing the mechanical properties of this type of bone pre and post expose to PP and in comparison with the control samples. A positive buck‑boost converter was applied to generate adjustable high voltage, high frequency pulses (up to 500 V and 10 kHz). The functional behavior of bone in response to pulse power excitation was elucidated by applying compressive loading until failure. The stiffness, failure stress (strength) and the total fracture energy (bone toughness) were determined as a measure of the main bone characteristics. Furthermore, an ultrasonic technique was applied to determine and comprise bone elasticity before and after pulse power stimulation. The elastic property of cortical bone samples appeared to remain unchanged following exposure to pulse power excitation for all three orthogonal directions obtained from ultrasonic technique and similarly from the compression test. Nevertheless, the compressive strength and toughness of bone samples were increased when they were exposed to 66 h of high power pulsed electromagnetic field compared to the control samples. As the toughness and the strength of the cortical bone tissue are directly associated with the quality and integrity of the collagen matrix whereas its stiffness is primarily related to bone mineral content these overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network causing the bone strength and toughness augmentation, it apparently did not affect the mineral phase of the cortical bone material. The results also confirmed that the indirect application of high power pulsed electric field at 500 V and 10 kHz through capacitive coupling method was safe and did not destroy the bone tissue construction.
Resumo:
The electrodeposition of copper onto copper, gold, palladium and glassy carbon (GC) electrodes via a hydrogen bubble templating method is reported. It is found that the composition of the underlying electrode material significantly influences the morphology of the copper electrodeposit. Highly ordered porous structures are achieved with Cu and Au electrodes, however on Pd this order is disrupted and a rough randomly oriented surface is formed whereas on GC a bubble templating effect is not observed. Chronopotentiograms recorded during the electrodeposition process allows bubble formation and detachment from the surface to be monitored where distinctly different potential versus time profiles are observed at the different electrodes. The porous Cu surfaces are characterised with scanning electron microscopy, X-ray diffraction and cyclic voltammetric measurements recorded under alkaline conditions. The latter demonstrates that there are active sites present on electrodeposited copper whose coverage and reactivity depend on the underlying electrode material. The most active Cu surface is achieved at a Pd substrate for both the hydrogen evolution reaction and the catalytic reduction of ferricyanide ions with thiosulphate ions. This demonstrates that the highly ordered porous structure on the micron scale which typifies the morphology that can be achieved with the hydrogen bubbling template method is not required in producing the most effective material.
Resumo:
This study investigates how the interaction of institutional market orientation and external search breadth influence the ability to use absorptive capacity to raise the level of corporate entrepreneurship. The findings of a sample of 331 supplier companies providing products and services to the mining industry of Australia and Iran indicate that the positive association between absorptive capacity and corporate entrepreneurship is stronger for companies with greater external knowledge search breadth. Moreover, operating in a less market-oriented institutional context such as, Iran diminishes the ability to utilise a firm’s absorptive capacity to raise their level of corporate entrepreneurship. Yet, firms operating in such contexts are able to overcome these disadvantages posed by their institutional context by engaging in broader external search of knowledge.
Resumo:
Many young firms face significant resource constraints during attempts to develop and grow. One promising theory that explicitly links to resource constraints is bricolage: a construct developed by Levi Strauss (1967). Bricolage aligns with notions of resourcefulness: using what’s on hand, through making do, and recombining resources for new or novel purposes. In this paper we further theorize and test the moderating effects of ownership team composition on bricolage and firm performance. Our findings suggest that team size, strong network ties, and functionality enhance the effects of bricolage in young firm performance.