597 resultados para Competency framework
Resumo:
Distributed computation and storage have been widely used for processing of big data sets. For many big data problems, with the size of data growing rapidly, the distribution of computing tasks and related data can affect the performance of the computing system greatly. In this paper, a distributed computing framework is presented for high performance computing of All-to-All Comparison Problems. A data distribution strategy is embedded in the framework for reduced storage space and balanced computing load. Experiments are conducted to demonstrate the effectiveness of the developed approach. They have shown that about 88% of the ideal performance capacity have be achieved in multiple machines through using the approach presented in this paper.
Resumo:
Introduction The multifactorial nature of clinical skills development makes assessment of undergraduate radiation therapist competence level by clinical mentors challenging. A recent overhaul of the clinical assessment strategy at Queensland University of Technology has moved away from the high-stakes Observed Structured Clinical Examination (OSCE) to encompass a more continuous measure of competence. This quantitative study aimed to gather stakeholder evidence to inform development of standards by which to measure student competence for a range of levels of progression. Methods A simple anonymous questionnaire was distributed to all Queensland radiation therapists. The tool asked respondents to assign different levels of competency with a range of clinical tasks to different levels of student. All data were anonymous and was combined for analysis using Microsoft Excel. Results Feedback indicated good agreement with tasks that specified amount of direction required and this has been incorporated into the new clinical achievements record that the students need to have signed off. Additional puzzling findings suggested higher expectations with planning tasks than with treatment-based tasks. Conclusion The findings suggest that the amount of direction required by students is a valid indicator of their level and has been adopted into the clinical assessment scheme. Further work will build on this to further define standards of competency for undergraduates.
Resumo:
Through an examination of Wallace v Kam, this article considers and evaluates the law of causation in the specific context of a medical practitioner’s duty to provide information to patients concerning material risks of treatment. To supply a contextual background for the analysis which follows, Part II summarises the basic principles of causation law, while Part III provides an overview of the case and the reasoning adopted in the decisions at first instance and on appeal. With particular emphasis upon the reasoning in the courts of appeal, Part IV then examines the implications of the case in the context of other jurisprudence in this field and, in so doing, provides a framework for a structured consideration of causation issues in future non-disclosure cases under the Australian civil liability legislation. As will become clear, Wallace was fundamentally decided on the basis of policy reasoning centred upon the purpose behind the legal duty violated. Although the plurality in Rogers v Whitaker rejected the utility of expressions such as ‘the patient’s right of self-determination’ in this context, some Australian jurisprudence may be thought to frame the practitioner’s duty to warn in terms of promoting a patient’s autonomy, or right to decide whether to submit to treatment proposed. Accordingly, the impact of Wallace upon the protection of this right, and the interrelation between it and the duty to warn’s purpose, is investigated. The analysis in Part IV also evaluates the courts’ reasoning in Wallace by questioning the extent to which Wallace’s approach to liability and causal connection in non-disclosure of risk cases: depends upon the nature and classification of the risk(s) in question; and can be reconciled with the way in which patients make decisions. Finally, Part V adopts a comparative approach by considering whether the same decision might be reached if Wallace was determined according to English law.
Resumo:
In vitro cell biology assays play a crucial role in informing our understanding of the migratory, proliferative and invasive properties of many cell types in different biological contexts. While mono-culture assays involve the study of a population of cells composed of a single cell type, co-culture assays study a population of cells composed of multiple cell types (or subpopulations of cells). Such co-culture assays can provide more realistic insights into many biological processes including tissue repair, tissue regeneration and malignant spreading. Typically, system parameters, such as motility and proliferation rates, are estimated by calibrating a mathematical or computational model to the observed experimental data. However, parameter estimates can be highly sensitive to the choice of model and modelling framework. This observation motivates us to consider the fundamental question of how we can best choose a model to facilitate accurate parameter estimation for a particular assay. In this work we describe three mathematical models of mono-culture and co-culture assays that include different levels of spatial detail. We study various spatial summary statistics to explore if they can be used to distinguish between the suitability of each model over a range of parameter space. Our results for mono-culture experiments are promising, in that we suggest two spatial statistics that can be used to direct model choice. However, co-culture experiments are far more challenging: we show that these same spatial statistics which provide useful insight into mono-culture systems are insuffcient for co-culture systems. Therefore, we conclude that great care ought to be exercised when estimating the parameters of co-culture assays.
Resumo:
This paper presents a novel framework for the modelling of passenger facilitation in a complex environment. The research is motivated by the challenges in the airport complex system, where there are multiple stakeholders, differing operational objectives and complex interactions and interdependencies between different parts of the airport system. Traditional methods for airport terminal modelling do not explicitly address the need for understanding causal relationships in a dynamic environment. Additionally, existing Bayesian Network (BN) models, which provide a means for capturing causal relationships, only present a static snapshot of a system. A method to integrate a BN complex systems model with stochastic queuing theory is developed based on the properties of the Poisson and exponential distributions. The resultant Hybrid Queue-based Bayesian Network (HQBN) framework enables the simulation of arbitrary factors, their relationships, and their effects on passenger flow and vice versa. A case study implementation of the framework is demonstrated on the inbound passenger facilitation process at Brisbane International Airport. The predicted outputs of the model, in terms of cumulative passenger flow at intermediary and end points in the inbound process, are found to have an R2 goodness of fit of 0.9994 and 0.9982 respectively over a 10 h test period. The utility of the framework is demonstrated on a number of usage scenarios including causal analysis and ‘what-if’ analysis. This framework provides the ability to analyse and simulate a dynamic complex system, and can be applied to other socio-technical systems such as hospitals.
Resumo:
This paper presents a layered framework for the purposes of integrating different Socio-Technical Systems (STS) models and perspectives into a whole-of-systems model. Holistic modelling plays a critical role in the engineering of STS due to the interplay between social and technical elements within these systems and resulting emergent behaviour. The framework decomposes STS models into components, where each component is either a static object, dynamic object or behavioural object. Based on existing literature, a classification of the different elements that make up STS, whether it be a social, technical or a natural environment element, is developed; each object can in turn be classified according to the STS elements it represents. Using the proposed framework, it is possible to systematically decompose models to an extent such that points of interface can be identified and the contextual factors required in transforming the component of one model to interface into another is obtained. Using an airport inbound passenger facilitation process as a case study socio-technical system, three different models are analysed: a Business Process Modelling Notation (BPMN) model, Hybrid Queue-based Bayesian Network (HQBN) model and an Agent Based Model (ABM). It is found that the framework enables the modeller to identify non-trivial interface points such as between the spatial interactions of an ABM and the causal reasoning of a HQBN, and between the process activity representation of a BPMN and simulated behavioural performance in a HQBN. Such a framework is a necessary enabler in order to integrate different modelling approaches in understanding and managing STS.
Resumo:
Speech recognition in car environments has been identified as a valuable means for reducing driver distraction when operating noncritical in-car systems. Under such conditions, however, speech recognition accuracy degrades significantly, and techniques such as speech enhancement are required to improve these accuracies. Likelihood-maximizing (LIMA) frameworks optimize speech enhancement algorithms based on recognized state sequences rather than traditional signal-level criteria such as maximizing signal-to-noise ratio. LIMA frameworks typically require calibration utterances to generate optimized enhancement parameters that are used for all subsequent utterances. Under such a scheme, suboptimal recognition performance occurs in noise conditions that are significantly different from that present during the calibration session – a serious problem in rapidly changing noise environments out on the open road. In this chapter, we propose a dialog-based design that allows regular optimization iterations in order to track the ever-changing noise conditions. Experiments using Mel-filterbank noise subtraction (MFNS) are performed to determine the optimization requirements for vehicular environments and show that minimal optimization is required to improve speech recognition, avoid over-optimization, and ultimately assist with semireal-time operation. It is also shown that the proposed design is able to provide improved recognition performance over frameworks incorporating a calibration session only.
Resumo:
This thesis examines the existing frameworks for energy management in the brewing industry and details the design, development and implementation of a new framework at a modern brewery. The aim of the research was to develop an energy management framework to identify opportunities in a systematic manner using Systems Engineering concepts and principles. This work led to a Sustainable Energy Management Framework, SEMF. Using the SEMF approach, one of Australia's largest breweries has achieved number 1 ranking in the world for water use for the production of beer and has also improved KPI's and sustained the energy management improvements that have been implemented during the past 15 years. The framework can be adapted to other manufacturing industries in the Australian context and is considered to be a new concept and a potentially important tool for energy management.