762 resultados para Cavity waveguide system
Resumo:
Maternal deaths have been a critical issue for women living in rural and remote areas. The need to travel long distances, the shortage of primary care providers such as physicians, specialists and nurses, and the closing of small hospitals have been problems identified in many rural areas. Some research work has been undertaken and a few techniques have been developed to remotely measure the physiological condition of pregnant women through sophisticated ultrasound equipment. There are numerous ways to reduce maternal deaths, and an important step is to select the right approaches to achieving this reduction. One such approach is the provision of decision support systems in rural and remote areas. Decision support systems (DSSs) have already shown a great potential in many health fields. This thesis proposes an ingenious decision support system (iDSS) based on the methodology of survey instruments and identification of significant variables to be used in iDSS using statistical analysis. A survey was undertaken with pregnant women and factorial experimental design was chosen to acquire sample size. Variables with good reliability in any one of the statistical techniques such as Chi-square, Cronbach’s á and Classification Tree were incorporated in the iDSS. The decision support system was developed with significant variables such as: Place of residence, Seeing the same doctor, Education, Tetanus injection, Baby weight, Previous baby born, Place of birth, Assisted delivery, Pregnancy parity, Doctor visits and Occupation. The ingenious decision support system was implemented with Visual Basic as front end and Microsoft SQL server management as backend. Outcomes of the ingenious decision support system include advice on Symptoms, Diet and Exercise to pregnant women. On conditional system was sent and validated by the gynaecologist. Another outcome of ingenious decision support system was to provide better pregnancy health awareness and reduce long distance travel, especially for women in rural areas. The proposed system has qualities such as usefulness, accuracy and accessibility.
Resumo:
Trauma to the spinal cord creates an initial physical injury damaging neurons, glia, and blood vessels, which then induces a prolonged inflammatory response, leading to secondary degeneration of spinal cord tissue, and further loss of neurons and glia surrounding the initial site of injury. Angiogenesis is a critical step in tissue repair, but in the injured spinal cord angiogenesis fails; blood vessels formed initially later regress. Stabilizing the angiogenic response is therefore a potential target to improve recovery after spinal cord injury (SCI). Vascular endothelial growth factor (VEGF) can initiate angiogenesis, but cannot sustain blood vessel maturation. Platelet-derived growth factor (PDGF) can promote blood vessel stability and maturation. We therefore investigated a combined application of VEGF and PDGF as treatment for traumatic spinal cord injury, with the aim to reduce secondary degeneration by promotion of angiogenesis. Immediately after hemisection of the spinal cord in the rat we delivered VEGF and PDGF and to the injury site. One and 3 months later the size of the lesion was significantly smaller in the treated group compared to controls, and there was significantly reduced gliosis surrounding the lesion. There was no significant effect of the treatment on blood vessel density, although there was a significant reduction in the numbers of macrophages/microglia surrounding the lesion, and a shift in the distribution of morphological and immunological phenotypes of these inflammatory cells. VEGF and PDGF delivered singly exacerbated secondary degeneration, increasing the size of the lesion cavity. These results demonstrate a novel therapeutic intervention for SCI, and reveal an unanticipated synergy for these growth factors whereby they modulated inflammatory processes and created a microenvironment conducive to axon preservation/sprouting.
Resumo:
There are an increasing number of compression systems available for treatment of venous leg ulcers and limited evidence on the relative effectiveness of these systems. The purpose of this study was to conduct a randomised controlled trial to compare the effectiveness of a 4-layer compression bandage system with Class 3 compression hosiery on healing and quality of life in patients with venous leg ulcers. Data were collected from 103 participants on demographics, health, ulcer status, treatments, pain, depression and quality of life for 24 weeks. After 24 weeks, 86% of the 4-layer bandage group and 77% of the hosiery group were healed (p=0.24). Median time to healing for the bandage group was 10 weeks, in comparison to 14 weeks for the hosiery group (p=0.018). Cox proportional hazards regression found participants in the 4-layer system were 2.1 times (95% CI 1.2–3.5) more likely to heal than those in hosiery, while longer ulcer duration, larger ulcer area and higher depression scores significantly delayed healing. No differences between groups were found in quality of life or pain measures. Findings indicate these systems were equally effective in healing patients by 24 weeks, however a 4-layer system may produce a more rapid response.
Resumo:
Traditional analytic models for power system fault diagnosis are usually formulated as an unconstrained 0–1 integer programming problem. The key issue of the models is to seek the fault hypothesis that minimizes the discrepancy between the actual and the expected states of the concerned protective relays and circuit breakers. The temporal information of alarm messages has not been well utilized in these methods, and as a result, the diagnosis results may be not unique and hence indefinite, especially when complicated and multiple faults occur. In order to solve this problem, this paper presents a novel analytic model employing the temporal information of alarm messages along with the concept of related path. The temporal relationship among the actions of protective relays and circuit breakers, and the different protection configurations in a modern power system can be reasonably represented by the developed model, and therefore, the diagnosed results will be more definite under different circumstances of faults. Finally, an actual power system fault was served to verify the proposed method.
Resumo:
Queensland University of Technology (QUT) was one of the first universities in Australia to establish an institutional repository. Launched in November 2003, the repository (QUT ePrints) uses the EPrints open source repository software (from Southampton) and has enjoyed the benefit of an institutional deposit mandate since January 2004. Currently (April 2012), the repository holds over 36,000 records, including 17,909 open access publications with another 2,434 publications embargoed but with mediated access enabled via the ‘Request a copy’ button which is a feature of the EPrints software. At QUT, the repository is managed by the library.QUT ePrints (http://eprints.qut.edu.au) The repository is embedded into a number of other systems at QUT including the staff profile system and the University’s research information system. It has also been integrated into a number of critical processes related to Government reporting and research assessment. Internally, senior research administrators often look to the repository for information to assist with decision-making and planning. While some statistics could be drawn from the advanced search feature and the existing download statistics feature, they were rarely at the level of granularity or aggregation required. Getting the information from the ‘back end’ of the repository was very time-consuming for the Library staff. In 2011, the Library funded a project to enhance the range of statistics which would be available from the public interface of QUT ePrints. The repository team conducted a series of focus groups and individual interviews to identify and prioritise functionality requirements for a new statistics ‘dashboard’. The participants included a mix research administrators, early career researchers and senior researchers. The repository team identified a number of business criteria (eg extensible, support available, skills required etc) and then gave each a weighting. After considering all the known options available, five software packages (IRStats, ePrintsStats, AWStats, BIRT and Google Urchin/Analytics) were thoroughly evaluated against a list of 69 criteria to determine which would be most suitable. The evaluation revealed that IRStats was the best fit for our requirements. It was deemed capable of meeting 21 out of the 31 high priority criteria. Consequently, IRStats was implemented as the basis for QUT ePrints’ new statistics dashboards which were launched in Open Access Week, October 2011. Statistics dashboards are now available at four levels; whole-of-repository level, organisational unit level, individual author level and individual item level. The data available includes, cumulative total deposits, time series deposits, deposits by item type, % fulltexts, % open access, cumulative downloads, time series downloads, downloads by item type, author ranking, paper ranking (by downloads), downloader geographic location, domains, internal v external downloads, citation data (from Scopus and Web of Science), most popular search terms, non-search referring websites. The data is displayed in charts, maps and table format. The new statistics dashboards are a great success. Feedback received from staff and students has been very positive. Individual researchers have said that they have found the information to be very useful when compiling a track record. It is now very easy for senior administrators (including the Deputy Vice Chancellor-Research) to compare the full-text deposit rates (i.e. mandate compliance rates) across organisational units. This has led to increased ‘encouragement’ from Heads of School and Deans in relation to the provision of full-text versions.
Resumo:
China continues to face great challenges in meeting the health needs of its large population. The challenges are not just lack of resources, but also how to use existing resources more efficiently, more effectively, and more equitably. Now a major unaddressed challenge facing China is how to reform an inefficient, poorly organized health care delivery system. The objective of this study is to analyze the role of private health care provision in China and discuss the implications of increasing private-sector development for improving health system performance. This study is based on an extensive literature review, the purpose of which was to identify, summarize, and evaluate ideas and information on private health care provision in China. In addition, the study uses secondary data analysis and the results of previous study by the authors to highlight the current situation of private health care provision in one province of China. This study found that government-owned hospitals form the backbone of the health care system and also account for most health care service provision. However, even though the public health care system is constantly trying to adapt to population needs and improve its performance, there are many problems in the system, such as limited access, low efficiency, poor quality, cost inflation, and low patient satisfaction. Currently, private hospitals are relatively rare, and private health care as an important component of the health care system in China has received little policy attention. It is argued that policymakers in China should recognize the role of private health care provision for health system performance, and then define and achieve an appropriate role for private health care provision in helping to respond to the many challenges facing the health system in present-day China.
Resumo:
In this Issues Paper, I raise some key points relevant for any government which is considering its child protection and family welfare policy. In particular, I will raise questions about whether a form of legislative reporting duty is required, and if so, what consequences this has for child protection. The context of child maltreatment - and each form of maltreatment: physical abuse, sexual abuse, psychological or emotional abuse, and neglect - is extremely complex, and the overarching question of how to deal with these phenomena involve challenging normative, economic and practical questions. There are no easy or perfect solutions. Nor, often, is there the amount and quality of evidence available on which public policy approaches should be devised. However, from the best evidence about the history of this context, from research conducted in this field, and from the best evidence available about the nature, incidence and effects of different subtypes of maltreatment, some observations can be made which may help to inform deliberations. I outline 10 key issues related to mandatory reporting legislation while being mindful of the New Zealand context. My view, based on both research evidence and a concern to protect and promote children’s interests, and society’s interests, is that reporting laws in some form are necessary and can contribute substantially to child protection and enhancing family and community health and wellbeing. However, they are only one necessary part of a sound child protection system, being a method of tertiary and secondary prevention, and primary prevention efforts must also be prioritised. Moreover, it is essential that if a legislative reporting duty is enacted, it must be designed carefully and implemented soundly, and it must be integrated within a properly resourced child protection and family welfare system.
Resumo:
Fire safety of light gauge cold-formed steel frame (LSF) wall systems is significant to the build-ing design. Gypsum plasterboard is widely used as a fire safety material in the building industry. It contains gypsum (CaSO4.2H2O), Calcium Carbonate (CaCO3) and most importantly free and chemically bound water in its crystal structure. The dehydration of the gypsum and the decomposition of Calcium Carbonate absorb heat, which gives the gypsum plasterboard fire resistant qualities. Recently a new composite panel system was developed, where a thin insulation layer was used externally between two plasterboards to improve the fire performance of LSF walls. In this research, finite element thermal models of both the traditional LSF wall panels with cavity insulation and the new LSF composite wall panels were developed to simulate their thermal behaviour under standard and realistic design fire conditions. Suitable thermal properties of gypsum plaster-board, insulation materials and steel were used. The developed models were then validated by comparing their results with fire test results. This paper presents the details of the developed finite element models of non-load bearing LSF wall panels and the thermal analysis results. It has shown that finite element models can be used to simulate the thermal behaviour of LSF walls with varying configurations of insulations and plasterboards. The results show that the use of cavity insulation was detrimental to the fire rating of LSF walls while the use of external insulation offered superior thermal protection. Effects of real fire conditions are also presented.
Numerical and experimental studies of cold-formed steel floor systems under standard fire conditions
Resumo:
Light gauge cold-formed steel frame (LSF) structures are increasingly used in industrial, commercial and residential buildings because of their non-combustibility, dimensional stability, and ease of installation. A floor-ceiling system is an example of its applications. LSF floor-ceiling systems must be designed to serve as fire compartment boundaries and provide adequate fire resistance. Fire rated floor-ceiling assemblies formed with new materials and construction methodologies have been increasingly used in buildings. However, limited research has been undertaken in the past and hence a thorough understanding of their fire resistance behaviour is not available. Recently a new composite panel in which an external insulation layer is used between two plasterboards has been developed at QUT to provide a higher fire rating to LSF floors under standard fire conditions. But its increased fire rating could not be determined using the currently available design methods. Research on LSF floor systems under fire conditions is relatively recent and the behaviour of floor joists and other components in the systems is not fully understood. The present design methods thus require the use of expensive fire protection materials to protect them from excessive heat increase during a fire. This leads to uneconomical and conservative designs. Fire rating of these floor systems is provided simply by adding more plasterboard sheets to the steel joists and such an approach is totally inefficient. Hence a detailed fire research study was undertaken into the structural and thermal performance of LSF floor systems including those protected by the new composite panel system using full scale fire tests and extensive numerical studies. Experimental study included both the conventional and the new steel floor-ceiling systems under structural and fire loads using a gas furnace designed to deliver heat in accordance with the standard time- temperature curve in AS 1530.4 (SA, 2005). Fire tests included the behavioural and deflection characteristics of LSF floor joists until failure as well as related time-temperature measurements across the section and along the length of all the specimens. Full scale fire tests have shown that the structural and thermal performance of externally insulated LSF floor system was superior than traditional LSF floors with or without cavity insulation. Therefore this research recommends the use of the new composite panel system for cold-formed LSF floor-ceiling systems. The numerical analyses of LSF floor joists were undertaken using the finite element program ABAQUS based on the measured time-temperature profiles obtained from fire tests under both steady state and transient state conditions. Mechanical properties at elevated temperatures were considered based on the equations proposed by Dolamune Kankanamge and Mahendran (2011). Finite element models were calibrated using the full scale test results and used to further provide a detailed understanding of the structural fire behaviour of the LSF floor-ceiling systems. The models also confirmed the superior performance of the new composite panel system. The validated model was then used in a detailed parametric study. Fire tests and the numerical studies showed that plasterboards provided sufficient lateral restraint to LSF floor joists until their failure. Hence only the section moment capacity of LSF floor joists subjected to local buckling effects was considered in this research. To predict the section moment capacity at elevated temperatures, the effective section modulus of joists at ambient temperature is generally considered adequate. However, this research has shown that it leads to considerable over- estimation of the local buckling capacity of joist subject to non-uniform temperature distributions under fire conditions. Therefore new simplified fire design rules were proposed for LSF floor joist to determine the section moment capacity at elevated temperature based on AS/NZS 4600 (SA, 2005), NAS (AISI, 2007) and Eurocode 3 Part 1.3 (ECS, 2006). The accuracy of the proposed fire design rules was verified with finite element analysis results. A spread sheet based design tool was also developed based on these design rules to predict the failure load ratio versus time, moment capacity versus time and temperature for various LSF floor configurations. Idealised time-temperature profiles of LSF floor joists were developed based on fire test measurements. They were used in the detailed parametric study to fully understand the structural and fire behaviour of LSF floor panels. Simple design rules were also proposed to predict both critical average joist temperatures and failure times (fire rating) of LSF floor systems with various floor configurations and structural parameters under any given load ratio. Findings from this research have led to a comprehensive understanding of the structural and fire behaviour of LSF floor systems including those protected by the new composite panel, and simple design methods. These design rules were proposed within the guidelines of the Australian/New Zealand, American and European cold- formed steel structures standard codes of practice. These may also lead to further improvements to fire resistance through suitable modifications to the current composite panel system.
Resumo:
In the context of increasing demand for potable water and the depletion of water resources, stormwater is a logical alternative. However, stormwater contains pollutants, among which metals are of particular interest due to their toxicity and persistence in the environment. Hence, it is imperative to remove toxic metals in stormwater to the levels prescribed by drinking water guidelines for potable use. Consequently, various techniques have been proposed, among which sorption using low cost sorbents is economically viable and environmentally benign in comparison to other techniques. However, sorbents show affinity towards certain toxic metals, which results in poor removal of other toxic metals. It was hypothesised in this study that a mixture of sorbents that have different metal affinity patterns can be used for the efficient removal of a range of toxic metals commonly found in stormwater. The performance of six sorbents in the sorption of Al, Cr, Cu, Pb, Ni, Zn and Cd, which are the toxic metals commonly found in urban stormwater, was investigated to select suitable sorbents for creating the mixtures. For this purpose, a multi criteria analytical protocol was developed using the decision making methods: PROMETHEE (Preference Ranking Organisation METHod for Enrichment Evaluations) and GAIA (Graphical Analysis for Interactive Assistance). Zeolite and seaweed were selected for the creation of trial mixtures based on their metal affinity pattern and the performance on predetermined selection criteria. The metal sorption mechanisms employed by seaweed and zeolite were defined using kinetics, isotherm and thermodynamics parameters, which were determined using the batch sorption experiments. Additionally, the kinetics rate-limiting steps were identified using an innovative approach using GAIA and Spearman correlation techniques developed as part of the study, to overcome the limitation in conventional graphical methods in predicting the degree of contribution of each kinetics step in limiting the overall metal removal rate. The sorption kinetics of zeolite was found to be primarily limited by intraparticle diffusion followed by the sorption reaction steps, which were governed mainly by the hydrated ionic diameter of metals. The isotherm study indicated that the metal sorption mechanism of zeolite was primarily of a physical nature. The thermodynamics study confirmed that the energetically favourable nature of sorption increased in the order of Zn < Cu < Cd < Ni < Pb < Cr < Al, which is in agreement with metal sorption affinity of zeolite. Hence, sorption thermodynamics has an influence on the metal sorption affinity of zeolite. On the other hand, the primary kinetics rate-limiting step of seaweed was the sorption reaction process followed by intraparticle diffusion. The boundary layer diffusion was also found to limit the metal sorption kinetics at low concentration. According to the sorption isotherm study, Cd, Pb, Cr and Al were sorbed by seaweed via ion exchange, whilst sorption of Ni occurred via physisorption. Furthermore, ionic bonding is responsible for the sorption of Zn. The thermodynamics study confirmed that sorption by seaweed was energetically favourable in the order of Zn < Cu < Cd < Cr . Al < Pb < Ni. However, this did not agree with the affinity series derived for seaweed suggesting a limited influence of sorption thermodynamics on metal affinity for seaweed. The investigation of zeolite-seaweed mixtures indicated that mixing sorbents have an effect on the kinetics rates and the sorption affinity. Additionally, the theoretical relationships were derived to predict the boundary layer diffusion rate, intraparticle diffusion rate, the sorption reaction rate and the enthalpy of mixtures based on that of individual sorbents. In general, low coefficient of determination (R2) for the relationships between theoretical and experimental data indicated that the relationships were not statistically significant. This was attributed to the heterogeneity of the properties of sorbents. Nevertheless, in relative terms, the intraparticle diffusion rate, sorption reaction rate and enthalpy of sorption had higher R2 values than the boundary layer diffusion rate suggesting that there was some relationship between the former set of parameters of mixtures and that of sorbents. The mixture, which contained 80% of zeolite and 20% of seaweed, showed similar affinity for the sorption of Cu, Ni, Cd, Cr and Al, which was attributed to approximately similar sorption enthalpy of the metal ions. Therefore, it was concluded that the seaweed-zeolite mixture can be used to obtain the same affinity for various metals present in a multi metal system provided the metal ions have similar enthalpy during sorption by the mixture.
Resumo:
Cold-formed steel stud walls are an important component of Light Steel Framing (LSF) building systems used in commercial, industrial and residential buildings. In the conventional LSF stud wall systems, thin-walled steel studs are protected from fire by placing one or two layers of plasterboard on both sides with or without cavity insulation. However, there is very limited data about the structural and thermal performance of these wall systems while past research showed contradicting results about the benefits of cavity insulation. This research proposed a new LSF stud wall system in which a composite panel made of two plasterboards with insulation between them was used to improve the fire rating of walls. Full scale fire tests were conducted using both conventional steel stud walls with and without the use of cavity insulation and the new composite panel system. Eleven full scale load bearing wall specimens were tested to study the thermal and structural performances of the load bearing wall assemblies under standard fire conditions. These tests showed that the use of cavity insulation led to inferior fire performance of walls while also providing good explanations and supporting test data to overcome the incorrect industry assumptions about cavity insulation. Tests demonstrated that the use of external insulation in a composite panel form enhanced the thermal and structural performances of stud walls and increased their fire resistance rating significantly. This paper presents the details of the full scale fire tests of load-bearing wall assemblies lined with plasterboards and different types of insulation under varying load ratios. Test results including the temperature and deflection profiles of walls measured during the fire tests will be presented along with their failure modes and failure times.
Resumo:
Introduction and objectives Early recognition of deteriorating patients results in better patient outcomes. Modified early warning scores (MEWS) attempt to identify deteriorating patients early so timely interventions can occur thus reducing serious adverse events. We compared frequencies of vital sign recording 24 h post-ICU discharge and 24 h preceding unplanned ICU admission before and after a new observation chart using MEWS and an associated educational programme was implemented into an Australian Tertiary referral hospital in Brisbane. Design Prospective before-and-after intervention study, using a convenience sample of ICU patients who have been discharged to the hospital wards, and in patients with an unplanned ICU admission, during November 2009 (before implementation; n = 69) and February 2010 (after implementation; n = 70). Main outcome measures Any change in a full set or individual vital sign frequency before-and-after the new MEWS observation chart and associated education programme was implemented. A full set of vital signs included Blood pressure (BP), heart rate (HR), temperature (T°), oxygen saturation (SaO2) respiratory rate (RR) and urine output (UO). Results After the MEWS observation chart implementation, we identified a statistically significant increase (210%) in overall frequency of full vital sign set documentation during the first 24 h post-ICU discharge (95% CI 148, 288%, p value <0.001). Frequency of all individual vital sign recordings increased after the MEWS observation chart was implemented. In particular, T° recordings increased by 26% (95% CI 8, 46%, p value = 0.003). An increased frequency of full vital sign set recordings for unplanned ICU admissions were found (44%, 95% CI 2, 102%, p value = 0.035). The only statistically significant improvement in individual vital sign recordings was urine output, demonstrating a 27% increase (95% CI 3, 57%, p value = 0.029). Conclusions The implementation of a new MEWS observation chart plus a supporting educational programme was associated with statistically significant increases in frequency of combined and individual vital sign set recordings during the first 24 h post-ICU discharge. There were no significant changes to frequency of individual vital sign recordings in unplanned admissions to ICU after the MEWS observation chart was implemented, except for urine output. Overall increases in the frequency of full vital sign sets were seen.
Resumo:
This paper presents an approach to modelling the resilience of a generic (potable) water supply system. The system is contextualized as a meta-system consisting of three subsystems to represent the natural catchment, the water treatment plant and the water distribution infrastructure for urban use. An abstract mathematical model of the meta-system is disaggregated progressively to form a cascade of equations forming a relational matrix of models. This allows the investigation of commonly implicit relationships between various operational components within the meta system, the in-depth understanding of specific system components and influential factors and the incorporation of explicit disturbances to explore system behaviour. Consequently, this will facilitate long-term decision making to achieve sustainable solutions for issues such as, meeting a growing demand or managing supply-side influences in the meta-system under diverse water availability regimes. This approach is based on the hypothesis that the means to achieve resilient supply of water may be better managed by modelling the effects of changes at specific levels that have a direct or in some cases indirect impact on higher-order outcomes. Additionally, the proposed strategy allows the definition of approaches to combine disparate data sets to synthesise previously missing or incomplete higher-order information, a scientifically robust means to define and carry out meta-analyses using knowledge from diverse yet relatable disciplines relevant to different levels of the system and for enhancing the understanding of dependencies and inter-dependencies of variable factors at various levels across the meta-system. The proposed concept introduces an approach for modelling a complex infrastructure system as a meta system which consists of a combination of bio-ecological, technical and socio-technical subsystems.