561 resultados para dynamic causal modeling
Resumo:
Because moving depictions of face emotion have greater ecological validity than their static counterparts, it has been suggested that still photographs may not engage ‘authentic’ mechanisms used to recognize facial expressions in everyday life. To date, however, no neuroimaging studies have adequately addressed the question of whether the processing of static and dynamic expressions rely upon different brain substrates. To address this, we performed an functional magnetic resonance imaging (fMRI) experiment wherein participants made emotional expression discrimination and Sex discrimination judgements to static and moving face images. Compared to Sex discrimination, Emotion discrimination was associated with widespread increased activation in regions of occipito-temporal, parietal and frontal cortex. These regions were activated both by moving and by static emotional stimuli, indicating a general role in the interpretation of emotion. However, portions of the inferior frontal gyri and supplementary/pre-supplementary motor area showed task by motion interaction. These regions were most active during emotion judgements to static faces. Our results demonstrate a common neural substrate for recognizing static and moving facial expressions, but suggest a role for the inferior frontal gyrus in supporting simulation processes that are invoked more strongly to disambiguate static emotional cues.
Resumo:
This thesis presents an approach for a vertical infrastructure inspection using a vertical take-off and landing (VTOL) unmanned aerial vehicle and shared autonomy. Inspecting vertical structure such as light and power distribution poles is a difficult task. There are challenges involved with developing such an inspection system, such as flying in close proximity to a target while maintaining a fixed stand-off distance from it. The contributions of this thesis fall into three main areas. Firstly, an approach to vehicle dynamic modeling is evaluated in simulation and experiments. Secondly, EKF-based state estimators are demonstrated, as well as estimator-free approaches such as image based visual servoing (IBVS) validated with motion capture ground truth data. Thirdly, an integrated pole inspection system comprising a VTOL platform with human-in-the-loop control, (shared autonomy) is demonstrated. These contributions are comprehensively explained through a series of published papers.
Resumo:
Purpose – Context-awareness has emerged as an important principle in the design of flexible business processes. The goal of the research is to develop an approach to extend context-aware business process modeling toward location-awareness. The purpose of this paper is to identify and conceptualize location-dependencies in process modeling. Design/methodology/approach – This paper uses a pattern-based approach to identify location-dependency in process models. The authors design specifications for these patterns. The authors present illustrative examples and evaluate the identified patterns through a literature review of published process cases. Findings – This paper introduces location-awareness as a new perspective to extend context-awareness in BPM research, by introducing relevant location concepts such as location-awareness and location-dependencies. The authors identify five basic location-dependent control-flow patterns that can be captured in process models. And the authors identify location-dependencies in several existing case studies of business processes. Research limitations/implications – The authors focus exclusively on the control-flow perspective of process models. Further work needs to extend the research to address location-dependencies in process data or resources. Further empirical work is needed to explore determinants and consequences of the modeling of location-dependencies. Originality/value – As existing literature mostly focusses on the broad context of business process, location in process modeling still is treated as “second class citizen” in theory and in practice. This paper discusses the vital role of location-dependencies within business processes. The proposed five basic location-dependent control-flow patterns are novel and useful to explain location-dependency in business process models. They provide a conceptual basis for further exploration of location-awareness in the management of business processes.
Resumo:
The chubby baby who eats well is desirable in our culture. Perceived low weight gains and feeding concerns are common reasons mothers seek advice in the early years. In contrast, childhood obesity is a global public health concern. Use of coercive feeding practices, prompted by maternal concern about weight, may disrupt a child’s innate self regulation of energy intake, promoting overeating and overweight. This study describes predictors of maternal concern about her child undereating/becoming underweight and feeding practices. Mothers in the control group of the NOURISH and South Australian Infants Dietary Intake studies (n = 332) completed a self-administered questionnaire when the child was aged 12–16 months. Weight-for-age z-score (WAZ)was derived from weight measured by study staff. Mean age (SD) was 13.8 (1.3) months, mean WAZ (SD), 0.58 (0.86) and 49% were male. WAZ and two questions describing food refusal were combined in a structural equation model with four items from the Infant feeding Questionnaire (IFQ) to form the factor ‘Concern about undereating/weight’. Structural relationships were drawn between concern and IFQ factors ‘awareness of infant’s hunger and satiety cues’, ‘use of food to calm infant’s fussiness’ and ‘feeding infant on a schedule’, resulting in a model of acceptable fit. Lower WAZ and higher frequency of food refusal predicted higher maternal concern. Higher maternal concern was associated with lower awareness of infant cues (r = −.17, p = .01) and greater use of food to calm (r = .13, p = .03). In a cohort of healthy children, maternal concern about undereating and underweight was associated with practices that have the potential to disrupt self-regulation.
Resumo:
Introduction: Built environment interventions designed to reduce non-communicable diseases and health inequity, complement urban planning agendas focused on creating more ‘liveable’, compact, pedestrian-friendly, less automobile dependent and more socially inclusive cities.However, what constitutes a ‘liveable’ community is not well defined. Moreover, there appears to be a gap between the concept and delivery of ‘liveable’ communities. The recently funded NHMRC Centre of Research Excellence (CRE) in Healthy Liveable Communities established in early 2014, has defined ‘liveability’ from a social determinants of health perspective. Using purpose-designed multilevel longitudinal data sets, it addresses five themes that address key evidence-base gaps for building healthy and liveable communities. The CRE in Healthy Liveable Communities seeks to generate and exchange new knowledge about: 1) measurement of policy-relevant built environment features associated with leading non-communicable disease risk factors (physical activity, obesity) and health outcomes (cardiovascular disease, diabetes) and mental health; 2) causal relationships and thresholds for built environment interventions using data from longitudinal studies and natural experiments; 3) thresholds for built environment interventions; 4) economic benefits of built environment interventions designed to influence health and wellbeing outcomes; and 5) factors, tools, and interventions that facilitate the translation of research into policy and practice. This evidence is critical to inform future policy and practice in health, land use, and transport planning. Moreover, to ensure policy-relevance and facilitate research translation, the CRE in Healthy Liveable Communities builds upon ongoing, and has established new, multi-sector collaborations with national and state policy-makers and practitioners. The symposium will commence with a brief introduction to embed the research within an Australian health and urban planning context, as well as providing an overall outline of the CRE in Healthy Liveable Communities, its structure and team. Next, an overview of the five research themes will be presented. Following these presentations, the Discussant will consider the implications of the research and opportunities for translation and knowledge exchange. Theme 2 will establish whether and to what extent the neighbourhood environment (built and social) is causally related to physical and mental health and associated behaviours and risk factors. In particular, research conducted as part of this theme will use data from large-scale, longitudinal-multilevel studies (HABITAT, RESIDE, AusDiab) to examine relationships that meet causality criteria via statistical methods such as longitudinal mixed-effect and fixed-effect models, multilevel and structural equation models; analyse data on residential preferences to investigate confounding due to neighbourhood self-selection and to use measurement and analysis tools such as propensity score matching and ‘within-person’ change modelling to address confounding; analyse data about individual-level factors that might confound, mediate or modify relationships between the neighbourhood environment and health and well-being (e.g., psychosocial factors, knowledge, perceptions, attitudes, functional status), and; analyse data on both objective neighbourhood characteristics and residents’ perceptions of these objective features to more accurately assess the relative contribution of objective and perceptual factors to outcomes such as health and well-being, physical activity, active transport, obesity, and sedentary behaviour. At the completion of the Theme 2, we will have demonstrated and applied statistical methods appropriate for determining causality and generated evidence about causal relationships between the neighbourhood environment, health, and related outcomes. This will provide planners and policy makers with a more robust (valid and reliable) basis on which to design healthy communities.
A tag-based personalized item recommendation system using tensor modeling and topic model approaches
Resumo:
This research falls in the area of enhancing the quality of tag-based item recommendation systems. It aims to achieve this by employing a multi-dimensional user profile approach and by analyzing the semantic aspects of tags. Tag-based recommender systems have two characteristics that need to be carefully studied in order to build a reliable system. Firstly, the multi-dimensional correlation, called as tag assignment
Empirical vehicle-to-vehicle pathloss modeling in highway, suburban and urban environments at 5.8GHz
Resumo:
In this paper, we present a pathloss characterization for vehicle-to-vehicle (V2V) communications based on empirical data collected from extensive measurement campaign performed under line-of-sight (LOS), non-line-of-sight (NLOS) and varying traffic densities. The experiment was conducted in three different V2V propagation environments: highway, suburban and urban at 5.8GHz. We developed pathloss models for each of the three different V2V environments considered. Based on a log-distance power law model, the values for the pathloss exponent and the standard deviation of shadowing were reported. The average pathloss exponent ranges from 1.77 for highway, 1.68 for the urban to 1.53 for the suburban environment. The reported results can contribute to vehicular network (VANET) simulators and can be used by system designers to develop, evaluate and validate new protocols and system designs under realistic propagation conditions.
Resumo:
Objective: To investigate limb loading and dynamic stability during squatting in the early functional recovery of total hip arthroplasty (THA) patients. Design: Cohort study Setting: Inpatient rehabilitation clinic. Participants: A random sample of 61 THA patients (34♂/27♀; 62±9 yrs, 77±14 kg, 174±9 cm) was assessed twice, 13.2±3.8 days (PRE) and 26.6±3.3 days post-surgery (POST), and compared with a healthy reference group (REF) (22♂/16♀; 47±12yrs; 78±20kg; 175±10cm). Interventions: THA patients received two weeks of standard in-patient rehabilitation. Main Outcome Measure(s): Inter-limb vertical force distribution and dynamic stability during the squat maneuver, as defined by the root mean square (RMS) of the center of pressure in antero-posterior and medio-lateral directions, of operated (OP) and non-operated (NON)limbs. Self-reported function was assessed via FFb-H-OA 2.0 questionnaire. Results: At PRE, unloading of the OP limb was 15.8% greater (P<.001, d=1.070) and antero-posterior and medio-lateral center of pressure RMS were 30-34% higher in THA than REF P<.05). Unloading was reduced by 12.8% towards a more equal distribution from PRE to POST (P<.001, d=0.874). Although medio-lateral stability improved between PRE and POST (OP: 14.8%, P=.024, d=0.397; NON: 13.1%, P=.015, d=0.321), antero-posterior stability was not significantly different. Self-reported physical function improved by 15.8% (P<.001, d=0.965). Conclusion(s): THA patients unload the OP limb and are dynamically more unstable during squatting in the early rehabilitation phase following total hip replacement than healthy adults. Although loading symmetry and medio-lateral stability improved to the level of healthy adults with rehabilitation, antero-posterior stability remained impaired. Measures of dynamic stability and load symmetry during squatting provide quantitative information that can be used to clinically monitor early functional recovery from THA.
Resumo:
Supervisory Control and Data Acquisition systems (SCADA) are widely used to control critical infrastructure automatically. Capturing and analyzing packet-level traffic flowing through such a network is an essential requirement for problems such as legacy network mapping and fault detection. Within the framework of captured network traffic, we present a simple modeling technique, which supports the mapping of the SCADA network topology via traffic monitoring. By characterizing atomic network components in terms of their input-output topology and the relationship between their data traffic logs, we show that these modeling primitives have good compositional behaviour, which allows complex networks to be modeled. Finally, the predictions generated by our model are found to be in good agreement with experimentally obtained traffic.
Resumo:
This research project provides a scientifically robust approach for assessing the resilience of water supply systems, which are critical infrastructure, to impacts of climate change and population growth. An approach for the identification of trigger points that allows timely and appropriate management actions to be taken to avoid catastrophic system failure is an important outcome of this project. In the current absence of a formal method to evaluate the resilience of a water supply system, the approach developed in this study was based on the characterisation of resilience of a water supply system to a range of surrogate measures. Accordingly, a set of indicators are proposed to evaluate system behaviour and logistic regression analysis was used to assess system behaviour under predicted rainfall, storage and demand conditions.
Resumo:
As a social species in a constantly changing environment, humans rely heavily on the informational richness and communicative capacity of the face. Thus, understanding how the brain processes information about faces in real-time is of paramount importance. The N170 is a high temporal resolution electrophysiological index of the brain's early response to visual stimuli that is reliably elicited in carefully controlled laboratory-based studies. Although the N170 has often been reported to be of greatest amplitude to faces, there has been debate regarding whether this effect might be an artifact of certain aspects of the controlled experimental stimulation schedules and materials. To investigate whether the N170 can be identified in more realistic conditions with highly variable and cluttered visual images and accompanying auditory stimuli we recorded EEG 'in the wild', while participants watched pop videos. Scene-cuts to faces generated a clear N170 response, and this was larger than the N170 to transitions where the videos cut to non-face stimuli. Within participants, wild-type face N170 amplitudes were moderately correlated to those observed in a typical laboratory experiment. Thus, we demonstrate that the face N170 is a robust and ecologically valid phenomenon and not an artifact arising as an unintended consequence of some property of the more typical laboratory paradigm.
Resumo:
The network reconfiguration is an important stage of restoring a power system after a complete blackout or a local outage. Reasonable planning of the network reconfiguration procedure is essential for rapidly restoring the power system concerned. An approach for evaluating the importance of a line is first proposed based on the line contraction concept. Then, the interpretative structural modeling (ISM) is employed to analyze the relationship among the factors having impacts on the network reconfiguration. The security and speediness of restoring generating units are considered with priority, and a method is next proposed to select the generating unit to be restored by maximizing the restoration benefit with both the generation capacity of the restored generating unit and the importance of the line in the restoration path considered. Both the start-up sequence of generating units and the related restoration paths are optimized together in the proposed method, and in this way the shortcomings of separately solving these two issues in the existing methods are avoided. Finally, the New England 10-unit 39-bus power system and the Guangdong power system in South China are employed to demonstrate the basic features of the proposed method.
Resumo:
Structural equation modeling (SEM) is a versatile multivariate statistical technique, and applications have been increasing since its introduction in the 1980s. This paper provides a critical review of 84 articles involving the use of SEM to address construction related problems over the period 1998–2012 including, but not limited to, seven top construction research journals. After conducting a yearly publication trend analysis, it is found that SEM applications have been accelerating over time. However, there are inconsistencies in the various recorded applications and several recurring problems exist. The important issues that need to be considered are examined in research design, model development and model evaluation and are discussed in detail with reference to current applications. A particularly important issue concerns the construct validity. Relevant topics for efficient research design also include longitudinal or cross-sectional studies, mediation and moderation effects, sample size issues and software selection. A guideline framework is provided to help future researchers in construction SEM applications.
Resumo:
Schizophrenia patients have been shown to be compromised in their ability to recognize facial emotion. This deficit has been shown to be related to negative symptoms severity. However, to date, most studies have used static rather than dynamic depictions of faces. Nineteen patients with schizophrenia were compared with seventeen controls on 2 tasks; the first involving the discrimination of facial identity, emotion, and butterfly wings; the second testing emotion recognition using both static and dynamic stimuli. In the first task, the patients performed more poorly than controls for emotion discrimination only, confirming a specific deficit in facial emotion recognition. In the second task, patients performed more poorly in both static and dynamic facial emotion processing. An interesting pattern of associations suggestive of a possible double dissociation emerged in relation to correlations with symptom ratings: high negative symptom ratings were associated with poorer recognition of static displays of emotion, whereas high positive symptom ratings were associated with poorer recognition of dynamic displays of emotion. However, while the strength of associations between negative symptom ratings and accuracy during static and dynamic facial emotion processing was significantly different, those between positive symptom ratings and task performance were not. The results confirm a facial emotion-processing deficit in schizophrenia using more ecologically valid dynamic expressions of emotion. The pattern of findings may reflect differential patterns of cortical dysfunction associated with negative and positive symptoms of schizophrenia in the context of differential neural mechanisms for the processing of static and dynamic displays of facial emotion.