540 resultados para Single-Vehicle Accidents.
Resumo:
On the basis of the growing interest on the impact of airborne particles on human exposure as well as the strong debate in Western countries on the emissions of waste incinerators, this work reviewed existing literature to: (i) show the emission factors of ultrafine particles (particles with a diameter less than 100 nm) of waste incinerators, and; (ii) assess the contribution of waste incinerators in terms of ultrafine particles to exposure and dose of people living in the surrounding areas of the plants in order to estimate eventual risks. The review identified only a limited number of studies measuring ultrafine particle emissions, and in general they report low particle number concentrations at the stack (the median value was equal to 5.5×103 part cm-3), in most cases higher than the outdoor background value. The lowest emissions were achieved by utilization of the bag-house filter which has an overall number-based filtration efficiency higher than 99%. Referring to reference case, the corresponding emission factor is equal to 9.1×1012 part min-1, that is lower than one single high-duty vehicle. Since the higher particle number concentrations found in the most contributing microenvironments to the exposure (indoor home, transportation, urban outdoor), the contribution of the waste incinerators to the daily dose can be considered as negligible.
Resumo:
Canonical single-stranded DNA-binding proteins (SSBs) from the oligosaccharide/oligonucleotide-binding (OB) domain family are present in all known organisms and are critical for DNA replication, recombination and repair. The SSB from the hyperthermophilic crenarchaeote Sulfolobus solfataricus (SsoSSB) has a ‘simple’ domain organization consisting of a single DNA-binding OB fold coupled to a flexible C-terminal tail, in contrast with other SSBs in this family that incorporate up to four OB domains. Despite the large differences in the domain organization within the SSB family, the structure of the OB domain is remarkably similar all cellular life forms. However, there are significant differences in the molecular mechanism of ssDNA binding. We have determined the structure of the SsoSSB OB domain bound to ssDNA by NMR spectroscopy. We reveal that ssDNA recognition is modulated by base-stacking of three key aromatic residues, in contrast with the OB domains of human RPA and the recently discovered human homologue of SsoSSB, hSSB1. We also demonstrate that SsoSSB binds ssDNA with a footprint of five bases and with a defined binding polarity. These data elucidate the structural basis of DNA binding and shed light on the molecular mechanism by which these ‘simple’ SSBs interact with ssDNA.
Resumo:
This paper discusses three different ways of applying the single-objective binary genetic algorithm into designing the wind farm. The introduction of different applications is through altering the binary encoding methods in GA codes. The first encoding method is the traditional one with fixed wind turbine positions. The second involves varying the initial positions from results of the first method, and it is achieved by using binary digits to represent the coordination of wind turbine on X or Y axis. The third is the mixing of the first encoding method with another one, which is by adding four more binary digits to represent one of the unavailable plots. The goal of this paper is to demonstrate how the single-objective binary algorithm can be applied and how the wind turbines are distributed under various conditions with best fitness. The main emphasis of discussion is focused on the scenario of wind direction varying from 0° to 45°. Results show that choosing the appropriate position of wind turbines is more significant than choosing the wind turbine numbers, considering that the former has a bigger influence on the whole farm fitness than the latter. And the farm has best performance of fitness values, farm efficiency, and total power with the direction between 20°to 30°.
Resumo:
Completed as part of a Joint PhD program between Queensland University of Technology and the Royal Institute of Technology in Stockholm, Sweden, this thesis examines the effects of different government incentive policies on the demand, usage and pricing of energy efficient vehicles. This study outlines recommendations for policy makers aiming to increase the uptake of energy efficient vehicles. The study finds that whilst many government incentives have been successful in encouraging the uptake of energy efficient vehicles, policy makers need to both recognise and attempt to minimise the potential unintended consequences of such initiatives.
Resumo:
This thesis presents the design process and the prototyping of a lightweight, modular robotic vehicle for the sustainable intensification of broadacre agriculture. Achieved by the joint operation of multiple autonomous vehicles to improve energy consumption, reduce labour, and increase efficiency in the application of inputs for the management of crops. The Small Robotic Farm Vehicle (SRFV) is a lightweight and energy efficient robotic vehicle with a configurable, modular design. It is capable of undertaking a range of agricultural tasks, including fertilising and weed management through mechanical intervention and precision spraying, whilst being more than an order of magnitude lower in weight than existing broadacre agricultural equipment.
Resumo:
In this paper, a novel 2×2 multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) testbed based on an Analog Devices AD9361 highly integrated radio frequency (RF) agile transceiver was specifically implemented for the purpose of estimating and analyzing MIMO-OFDM channel capacity in vehicle-to-infrastructure (V2I) environments using the 920 MHz industrial, scientific, and medical (ISM) band. We implemented two-dimensional discrete cosine transform-based filtering to reduce the channel estimation errors and show its effectiveness on our measurement results. We have also analyzed the effects of channel estimation error on the MIMO channel capacity by simulation. Three different scenarios of subcarrier spacing were investigated which correspond to IEEE 802.11p, Long-Term Evolution (LTE), and Digital Video Broadcasting Terrestrial (DVB-T)(2k) standards. An extensive MIMO-OFDM V2I channel measurement campaign was performed in a suburban environment. Analysis of the measured MIMO channel capacity results as a function of the transmitter-to-receiver (TX-RX) separation distance up to 250 m shows that the variance of the MIMO channel capacity is larger for the near-range line-of-sight (LOS) scenarios than for the long-range non-LOS cases, using a fixed receiver signal-to-noise ratio (SNR) criterion. We observed that the largest capacity values were achieved at LOS propagation despite the common assumption of a degenerated MIMO channel in LOS. We consider that this is due to the large angular spacing between MIMO subchannels which occurs when the receiver vehicle rooftop antennas pass by the fixed transmitter antennas at close range, causing MIMO subchannels to be orthogonal. In addition, analysis on the effects of different subcarrier spacings on MIMO-OFDM channel capacity showed negligible differences in mean channel capacity for the subcarrier spacing range investigated. Measured channels described in this paper are available on request.
Resumo:
Density functional theory (DFT) calculations were performed to study the structural, mechanical, electrical, optical properties, and strain effects in single-layer sodium phosphidostannate(II) (NaSnP). We find the exfoliation of single-layer NaSnP from bulk form is highly feasible because the cleavage energy is comparable to graphite and MoS2. In addition, the breaking strain of the NaSnP monolayer is comparable to other widely studied 2D materials, indicating excellent mechanical flexibility of 2D NaSnP. Using the hybrid functional method, the calculated band gap of single-layer NaSnP is close to the ideal band gap of solar cell materials (1.5 eV), demonstrating great potential in future photovoltaic application. Furthermore, strain effect study shows that a moderate compression (2%) can trigger indirect-to-direct gap transition, which would enhance the ability of light absorption for the NaSnP monolayer. With sufficient compression (8%), the single-layer NaSnP can be tuned from semiconductor to metal, suggesting great applications in nanoelectronic devices based on strain engineering techniques.
Resumo:
Background and purpose There are no published studies on the parameterisation and reliability of the single-leg stance (SLS) test with inertial sensors in stroke patients. Purpose: to analyse the reliability (intra-observer/inter-observer) and sensitivity of inertial sensors used for the SLS test in stroke patients. Secondary objective: to compare the records of the two inertial sensors (trunk and lumbar) to detect any significant differences in the kinematic data obtained in the SLS test. Methods Design: cross-sectional study. While performing the SLS test, two inertial sensors were placed at lumbar (L5-S1) and trunk regions (T7–T8). Setting: Laboratory of Biomechanics (Health Science Faculty - University of Málaga). Participants: Four chronic stroke survivors (over 65 yrs old). Measurement: displacement and velocity, Rotation (X-axis), Flexion/Extension (Y-axis), Inclination (Z-axis); Resultant displacement and velocity (V): RV=(Vx2+Vy2+Vz2)−−−−−−−−−−−−−−−−−√ Along with SLS kinematic variables, descriptive analyses, differences between sensors locations and intra-observer and inter-observer reliability were also calculated. Results Differences between the sensors were significant only for left inclination velocity (p = 0.036) and extension displacement in the non-affected leg with eyes open (p = 0.038). Intra-observer reliability of the trunk sensor ranged from 0.889-0.921 for the displacement and 0.849-0.892 for velocity. Intra-observer reliability of the lumbar sensor was between 0.896-0.949 for the displacement and 0.873-0.894 for velocity. Inter-observer reliability of the trunk sensor was between 0.878-0.917 for the displacement and 0.847-0.884 for velocity. Inter-observer reliability of the lumbar sensor ranged from 0.870-0.940 for the displacement and 0.863-0.884 for velocity. Conclusion There were no significant differences between the kinematic records made by an inertial sensor during the development of the SLS testing between two inertial sensors placed in the lumbar and thoracic regions. In addition, inertial sensors. Have the potential to be reliable, valid and sensitive instruments for kinematic measurements during SLS testing but further research is needed.
Resumo:
We extended genetic linkage analysis - an analysis widely used in quantitative genetics - to 3D images to analyze single gene effects on brain fiber architecture. We collected 4 Tesla diffusion tensor images (DTI) and genotype data from 258 healthy adult twins and their non-twin siblings. After high-dimensional fluid registration, at each voxel we estimated the genetic linkage between the single nucleotide polymorphism (SNP), Val66Met (dbSNP number rs6265), of the BDNF gene (brain-derived neurotrophic factor) with fractional anisotropy (FA) derived from each subject's DTI scan, by fitting structural equation models (SEM) from quantitative genetics. We also examined how image filtering affects the effect sizes for genetic linkage by examining how the overall significance of voxelwise effects varied with respect to full width at half maximum (FWHM) of the Gaussian smoothing applied to the FA images. Raw FA maps with no smoothing yielded the greatest sensitivity to detect gene effects, when corrected for multiple comparisons using the false discovery rate (FDR) procedure. The BDNF polymorphism significantly contributed to the variation in FA in the posterior cingulate gyrus, where it accounted for around 90-95% of the total variance in FA. Our study generated the first maps to visualize the effect of the BDNF gene on brain fiber integrity, suggesting that common genetic variants may strongly determine white matter integrity.
Resumo:
Current educational practice tends to ascribe a limiting vision of the good student as one who is well behaved, performs well in assessments and demonstrates values in keeping with dominant expectations. This paper argues that this vision of the good student is antithetical to the lived experience of students as they negotiate their positionality within complex power games in secondary schools. Student voices in focus group research nominate six rationales of the good student that inform their ‘performances’ of the good student. Understanding the multiplicity and dynamism of the good student is an educational imperative as schools seek to meet the changing needs of society in the new millennium.
Resumo:
Road transport plays a significant role in various industries and mobility services around the globe and has a vital impact on our daily lives. However it also has serious impacts on both public health and the environment. In-vehicle feedback systems are a relatively new approach to encouraging driver behavior change for improving fuel efficiency and safety in automotive environments. While many studies claim that the adoption of eco-driving practices, such as eco-driving training programs and in-vehicle feedback to drivers, has the potential to improve fuel efficiency, limited research has integrated safety and eco-driving. Therefore, it is crucial to understand the human factors related theories and practices which will inform the design of an in-vehicle Human Machine Interface (HMI) that could provide real-time driver feedback and consequently improve both fuel efficiency and safety. This paper provides a comprehensive review of the current state of published literature on in-vehicle systems to identify and evaluate the impact of eco-driving and safety feedback systems. This paper also discusses how these factors may conflict with one another and have a negative effect on road safety, while also exploring possible eco-driving practices that could encourage more sustainable, environmentally-conscious and safe driving behavior. The review revealed a lack of comprehensive theoretical research integrating eco-driving and safe driving, and no current available HMI covering both aspects simultaneously. Furthermore, the review identified that some eco-driving in-vehicle systems may enhance fuel efficiency without compromising safety. The review has identified a range of concepts which can be developed to influence driver acceptance of safety and eco-driving systems within the area of HMI. This can promote new research aimed at enhancing our understanding of the relationship between eco-driving and safety from the human factors viewpoint. This provides a foundation for developing innovative, persuasive and acceptable in-vehicle HMI systems to improve fuel efficiency and road safety.
Resumo:
Objective: Drink driving contributes to significant levels of injury and economic loss in China but is not well researched. This study examined knowledge, drink-driving practices, and alcohol misuse problems among general drivers in Yinchuan. The objectives were to gain a better understanding of drink driving in Yinchuan, identify areas that need to be addressed, and compare the results with a similar study in Guangzhou. Methods: This was a cross-sectional study with a survey designed to collect information on participants’ demographic characteristics and their knowledge and practices in relation to drinking and driving. The survey was composed of questions on knowledge and practices in relation to drink driving and was administered to a convenience sample of 406 drivers. Alcohol misuse problems were assessed by using the Alcohol Use Disorders Identification Test (AUDIT). Results: Males accounted for the main proportion of drivers sampled from the general population (“general drivers”). A majority of general drivers in both cities knew that drunk driving had become a criminal offense in 2011; however, knowledge of 2 legal blood alcohol concentration (BAC) limits was quite low. Fewer drivers in Yinchuan (22.6%) than in Guangzhou (27.9) reported having been stopped by police conducting breath alcohol testing at least once in the last 12 months. The mean AUDIT score in Yinchuan (M = 8.2) was higher than that in Guangzhou (M = 7.4), and the proportion of Yinchuan drivers with medium or higher alcohol misuse problems (31.2%) was correspondingly higher than in Guangzhou (23.1%). In Yinchuan, males had a significantly higher AUDIT score than females (t = 3.454, P < .001), similar to Guangzhou. Multiple regression analyses were conducted on potential predictors of the AUDIT score (age, gender, monthly income, education level, years licensed, and age started drinking). There were significant individual contributions of gender (beta = 0.173, P = .09) and age at which drinking started (beta = 0.141, P = .033), but the overall model for Yinchuan was not significant, unlike Guangzhou. Conclusions: The results show that there are shortfalls in knowledge of the legislation and how to comply with it and deficiencies in police enforcement. In addition, there was evidence of drink driving and drink riding at high levels in both cities. Recommendations are made to address these issues.
Resumo:
Graphitic like layered materials exhibit intriguing electronic structures and thus the search for new types of two-dimensional (2D) monolayer materials is of great interest for developing novel nano-devices. By using density functional theory (DFT) method, here we for the first time investigate the structure, stability, electronic and optical properties of monolayer lead iodide (PbI2). The stability of PbI2 monolayer is first confirmed by phonon dispersion calculation. Compared to the calculation using generalized gradient approximation, screened hybrid functional and spin–orbit coupling effects can not only predicts an accurate bandgap (2.63 eV), but also the correct position of valence and conduction band edges. The biaxial strain can tune its bandgap size in a wide range from 1 eV to 3 eV, which can be understood by the strain induced uniformly change of electric field between Pb and I atomic layer. The calculated imaginary part of the dielectric function of 2D graphene/PbI2 van der Waals type hetero-structure shows significant red shift of absorption edge compared to that of a pure monolayer PbI2. Our findings highlight a new interesting 2D material with potential applications in nanoelectronics and optoelectronics.
Resumo:
Single nucleotide polymorphisms (SNPs) are widely acknowledged as the marker of choice for many genetic and genomic applications because they show co-dominant inheritance, are highly abundant across genomes and are suitable for high-throughput genotyping. Here we evaluated the applicability of SNP markers developed from Crassostrea gigas and C. virginica expressed sequence tags (ESTs) in closely related Crassostrea and Ostrea species. A total of 213 putative interspecific level SNPs were identified from re-sequencing data in six amplicons, yielding on average of one interspecific level SNP per seven bp. High polymorphism levels were observed and the high success rate of transferability show that genic EST-derived SNP markers provide an efficient method for rapid marker development and SNP discovery in closely related oyster species. The six EST-SNP markers identified here will provide useful molecular tools for addressing questions in molecular ecology and evolution studies including for stock analysis (pedigree monitoring) in related oyster taxa.
Resumo:
We report here the genome sequences of two alphabaculoviruses of Helicoverpa spp. from Australia: AC53, used in the biopesticides ViVUS and ViVUS Max, and H25EA1, used in in vitro production studies.