542 resultados para Multiple classification
Resumo:
Background Multiple health behavior change can ameliorate adverse effects of cancer. Purpose The purpose of this study was to determine the effects of a multiple health behavior change intervention (CanChange) for colorectal cancer survivors on psychosocial outcomes and quality of life. Methods A total of 410 colorectal cancer survivors were randomized to a 6-month telephone-based health coaching intervention (11 sessions using acceptance and commitment therapy strategies focusing on physical activity, weight management, diet, alcohol, and smoking) or usual care. Posttraumatic growth, spirituality, acceptance, mindfulness, distress, and quality of life were assessed at baseline, 6 and 12 months. Results Significant intervention effects were observed for posttraumatic growth at 6 (7.5, p < 0.001) and 12 months (4.1, p = 0.033), spirituality at 6 months (1.8, p = 0.011), acceptance at 6 months (0.2, p = 0.005), and quality of life at 6 (0.8, p = 0.049) and 12 months (0.9, p = 0.037). Conclusions The intervention improved psychosocial outcomes and quality of life (physical well-being) at 6 months with most effects still present at 12 months. (Trial Registration Number: ACTRN12608000399392).
Resumo:
Interest in the area of collaborative Unmanned Aerial Vehicles (UAVs) in a Multi-Agent System is growing to compliment the strengths and weaknesses of the human-machine relationship. To achieve effective management of multiple heterogeneous UAVs, the status model of the agents must be communicated to each other. This paper presents the effects on operator Cognitive Workload (CW), Situation Awareness (SA), trust and performance by increasing the autonomy capability transparency through text-based communication of the UAVs to the human agents. The results revealed a reduction in CW, increase in SA, increase in the Competence, Predictability and Reliability dimensions of trust, and the operator performance.
Resumo:
Crashes at any particular transport network location consist of a chain of events arising from a multitude of potential causes and/or contributing factors whose nature is likely to reflect geometric characteristics of the road, spatial effects of the surrounding environment, and human behavioural factors. It is postulated that these potential contributing factors do not arise from the same underlying risk process, and thus should be explicitly modelled and understood. The state of the practice in road safety network management applies a safety performance function that represents a single risk process to explain crash variability across network sites. This study aims to elucidate the importance of differentiating among various underlying risk processes contributing to the observed crash count at any particular network location. To demonstrate the principle of this theoretical and corresponding methodological approach, the study explores engineering (e.g. segment length, speed limit) and unobserved spatial factors (e.g. climatic factors, presence of schools) as two explicit sources of crash contributing factors. A Bayesian Latent Class (BLC) analysis is used to explore these two sources and to incorporate prior information about their contribution to crash occurrence. The methodology is applied to the state controlled roads in Queensland, Australia and the results are compared with the traditional Negative Binomial (NB) model. A comparison of goodness of fit measures indicates that the model with a double risk process outperforms the single risk process NB model, and thus indicating the need for further research to capture all the three crash generation processes into the SPFs.
Resumo:
Within online learning communities, receiving timely and meaningful insights into the quality of learning activities is an important part of an effective educational experience. Commonly adopted methods – such as the Community of Inquiry framework – rely on manual coding of online discussion transcripts, which is a costly and time consuming process. There are several efforts underway to enable the automated classification of online discussion messages using supervised machine learning, which would enable the real-time analysis of interactions occurring within online learning communities. This paper investigates the importance of incorporating features that utilise the structure of on-line discussions for the classification of "cognitive presence" – the central dimension of the Community of Inquiry framework focusing on the quality of students' critical thinking within online learning communities. We implemented a Conditional Random Field classification solution, which incorporates structural features that may be useful in increasing classification performance over other implementations. Our approach leads to an improvement in classification accuracy of 5.8% over current existing techniques when tested on the same dataset, with a precision and recall of 0.630 and 0.504 respectively.
Resumo:
Ankylosing spondylitis is a common, highly heritable inflammatory arthritis affecting primarily the spine and pelvis. In addition to HLA-B*27 alleles, 12 loci have previously been identified that are associated with ankylosing spondylitis in populations of European ancestry, and 2 associated loci have been identified in Asians. In this study, we used the Illumina Immunochip microarray to perform a case-control association study involving 10,619 individuals with ankylosing spondylitis (cases) and 15,145 controls. We identified 13 new risk loci and 12 additional ankylosing spondylitis-associated haplotypes at 11 loci. Two ankylosing spondylitis-associated regions have now been identified encoding four aminopeptidases that are involved in peptide processing before major histocompatibility complex (MHC) class I presentation. Protective variants at two of these loci are associated both with reduced aminopeptidase function and with MHC class I cell surface expression.
Resumo:
We performed a genome-wide association study (GWAS) in 1705 Parkinson's disease (PD) UK patients and 5175 UK controls, the largest sample size so far for a PD GWAS. Replication was attempted in an additional cohort of 1039 French PD cases and 1984 controls for the 27 regions showing the strongest evidence of association (P < 10 4). We replicated published associations in the 4q22/SNCA and 17q21/MAPT chromosome regions (P < 10 10) and found evidence for an additional independent association in 4q22/SNCA.A detailed analysis of the haplotype structure at 17q21 showed that there are three separate risk groups within this region. We found weak but consistent evidence of association for common variants located in three previously published associated regions (4p15/BST1, 4p16/GAK and 1q32/PARK16). We found no support for the previously reported SNP association in 12q12/LRRK2. We also found an association of the two SNPs in 4q22/SNCA with the age of onset of the disease. © The Author 2010. Published by Oxford University Press.
Resumo:
Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis. © 2011 Macmillan Publishers Limited. All rights reserved.
Resumo:
Multiple sclerosis (MS) is an autoimmune disease with a genetic component, caused at least in part by aberrant lymphocyte activity. The whole blood mRNA transcriptome was measured for 99 untreated MS patients: 43 primary progressive MS, 20 secondary progressive MS, 36 relapsing remitting MS and 45 age-matched healthy controls. The ANZgene Multiple Sclerosis Genetics Consortium genotyped more than 300 000 SNPs for 115 of these samples. Transcription from genes on translational regulation, oxidative phosphorylation, immune synapse and antigen presentation pathways was markedly increased in all forms of MS. Expression of genes tagging T cells was also upregulated (P < 10-12) in MS. A T cell gene signature predicts disease state with a concordance index of 0.79 with age and gender as co-variables, but the signature is not associated with clinical course or disability. The ANZgene genome wide association screen identified two novel regions with genome wide significance: one encoding the T cell co-stimulatory molecule, CD40; the other a region on chromosome 12q13-14. The CD40 haplotype associated with increased MS susceptibility has decreased gene expression in MS (P < 0.0007). The second MS susceptibility region includes 17 genes on 12q13-14 in tight linkage disequilibrium. Of these, only 13 are expressed in leukocytes, and of these the expression of one, FAM119B, is much lower in the susceptibility haplotype (P tdthomlt; 10-14). Overall, these data indicate dysregulation of T cells can be detected in the whole blood of untreated MS patients, and supports targeting of activated T cells in therapy for all forms of MS.
Resumo:
INTRODUCTION Although the high heritability of BMD variation has long been established, few genes have been conclusively shown to affect the variation of BMD in the general population. Extreme truncate selection has been proposed as a more powerful alternative to unselected cohort designs in quantitative trait association studies. We sought to test these theoretical predictions in studies of the bone densitometry measures BMD, BMC, and femoral neck area, by investigating their association with members of the Wnt pathway, some of which have previously been shown to be associated with BMD in much larger cohorts, in a moderate-sized extreme truncate selected cohort (absolute value BMD Z-scores = 1.5-4.0; n = 344). MATERIALS AND METHODS Ninety-six tag-single nucleotide polymorphism (SNPs) lying in 13 Wnt signaling pathway genes were selected to tag common genetic variation (minor allele frequency [MAF] > 5% with an r(2) > 0.8) within 5 kb of all exons of 13 Wnt signaling pathway genes. The genes studied included LRP1, LRP5, LRP6, Wnt3a, Wnt7b, Wnt10b, SFRP1, SFRP2, DKK1, DKK2, FZD7, WISP3, and SOST. Three hundred forty-four cases with either high or low BMD were genotyped by Illumina Goldengate microarray SNP genotyping methods. Association was tested either by Cochrane-Armitage test for dichotomous variables or by linear regression for quantitative traits. RESULTS Strong association was shown with LRP5, polymorphisms of which have previously been shown to influence total hip BMD (minimum p = 0.0006). In addition, polymorphisms of the Wnt antagonist, SFRP1, were significantly associated with BMD and BMC (minimum p = 0.00042). Previously reported associations of LRP1, LRP6, and SOST with BMD were confirmed. Two other Wnt pathway genes, Wnt3a and DKK2, also showed nominal association with BMD. CONCLUSIONS This study shows that polymorphisms of multiple members of the Wnt pathway are associated with BMD variation. Furthermore, this study shows in a practical trial that study designs involving extreme truncate selection and moderate sample sizes can robustly identify genes of relevant effect sizes involved in BMD variation in the general population. This has implications for the design of future genome-wide studies of quantitative bone phenotypes relevant to osteoporosis.
Resumo:
Avian species richness surveys, which measure the total number of unique avian species, can be conducted via remote acoustic sensors. An immense quantity of data can be collected, which, although rich in useful information, places a great workload on the scientists who manually inspect the audio. To deal with this big data problem, we calculated acoustic indices from audio data at a one-minute resolution and used them to classify one-minute recordings into five classes. By filtering out the non-avian minutes, we can reduce the amount of data by about 50% and improve the efficiency of determining avian species richness. The experimental results show that, given 60 one-minute samples, our approach enables to direct ecologists to find about 10% more avian species.
Resumo:
Frog species have been declining worldwide at unprecedented rates in the past decades. There are many reasons for this decline including pollution, habitat loss, and invasive species [1]. To preserve, protect, and restore frog biodiversity, it is important to monitor and assess frog species. In this paper, a novel method using image processing techniques for analyzing Australian frog vocalisations is proposed. An FFT is applied to audio data to produce a spectrogram. Then, acoustic events are detected and isolated into corresponding segments through image processing techniques applied to the spectrogram. For each segment, spectral peak tracks are extracted with selected seeds and a region growing technique is utilised to obtain the contour of each frog vocalisation. Based on spectral peak tracks and the contour of each frog vocalisation, six feature sets are extracted. Principal component analysis reduces each feature set down to six principal components which are tested for classification performance with a k-nearest neighbor classifier. This experiment tests the proposed method of classification on fourteen frog species which are geographically well distributed throughout Queensland, Australia. The experimental results show that the best average classification accuracy for the fourteen frog species can be up to 87%.
Resumo:
Acoustic classification of anurans (frogs) has received increasing attention for its promising application in biological and environment studies. In this study, a novel feature extraction method for frog call classification is presented based on the analysis of spectrograms. The frog calls are first automatically segmented into syllables. Then, spectral peak tracks are extracted to separate desired signal (frog calls) from background noise. The spectral peak tracks are used to extract various syllable features, including: syllable duration, dominant frequency, oscillation rate, frequency modulation, and energy modulation. Finally, a k-nearest neighbor classifier is used for classifying frog calls based on the results of principal component analysis. The experiment results show that syllable features can achieve an average classification accuracy of 90.5% which outperforms Mel-frequency cepstral coefficients features (79.0%).
Resumo:
Frog protection has become increasingly essential due to the rapid decline of its biodiversity. Therefore, it is valuable to develop new methods for studying this biodiversity. In this paper, a novel feature extraction method is proposed based on perceptual wavelet packet decomposition for classifying frog calls in noisy environments. Pre-processing and syllable segmentation are first applied to the frog call. Then, a spectral peak track is extracted from each syllable if possible. Track duration, dominant frequency and oscillation rate are directly extracted from the track. With k-means clustering algorithm, the calculated dominant frequency of all frog species is clustered into k parts, which produce a frequency scale for wavelet packet decomposition. Based on the adaptive frequency scale, wavelet packet decomposition is applied to the frog calls. Using the wavelet packet decomposition coefficients, a new feature set named perceptual wavelet packet decomposition sub-band cepstral coefficients is extracted. Finally, a k-nearest neighbour (k-NN) classifier is used for the classification. The experiment results show that the proposed features can achieve an average classification accuracy of 97.45% which outperforms syllable features (86.87%) and Mel-frequency cepstral coefficients (MFCCs) feature (90.80%).
Resumo:
Frogs have received increasing attention due to their effectiveness for indicating the environment change. Therefore, it is important to monitor and assess frogs. With the development of sensor techniques, large volumes of audio data (including frog calls) have been collected and need to be analysed. After transforming the audio data into its spectrogram representation using short-time Fourier transform, the visual inspection of this representation motivates us to use image processing techniques for analysing audio data. Applying acoustic event detection (AED) method to spectrograms, acoustic events are firstly detected from which ridges are extracted. Three feature sets, Mel-frequency cepstral coefficients (MFCCs), AED feature set and ridge feature set, are then used for frog call classification with a support vector machine classifier. Fifteen frog species widely spread in Queensland, Australia, are selected to evaluate the proposed method. The experimental results show that ridge feature set can achieve an average classification accuracy of 74.73% which outperforms the MFCCs (38.99%) and AED feature set (67.78%).
Resumo:
Over past few decades, frog species have been experiencing dramatic decline around the world. The reason for this decline includes habitat loss, invasive species, climate change and so on. To better know the status of frog species, classifying frogs has become increasingly important. In this study, acoustic features are investigated for multi-level classification of Australian frogs: family, genus and species, including three families, eleven genera and eighty five species which are collected from Queensland, Australia. For each frog species, six instances are selected from which ten acoustic features are calculated. Then, the multicollinearity between ten features are studied for selecting non-correlated features for subsequent analysis. A decision tree (DT) classifier is used to visually and explicitly determine which acoustic features are relatively important for classifying family, which for genus, and which for species. Finally, a weighted support vector machines (SVMs) classifier is used for the multi- level classification with three most important acoustic features respectively. Our experiment results indicate that using different acoustic feature sets can successfully classify frogs at different levels and the average classification accuracy can be up to 85.6%, 86.1% and 56.2% for family, genus and species respectively.