569 resultados para Multi-robot cooperation
Resumo:
This paper reports on a collaborative research project between the Faculty of Health Sciences at the University of Ottawa, Triathlon Canada, and the Coaching Association of Canada (CAC). It was designed around a lifelong learner perspective and the Organization for Economic Cooperation and Development’s (OECD) qualifications system. In this paper, we first review the coach learning literature as it pertains to the CAC. We then highlight the background and perspective of a high performance director’s experience in designing and attempting to implement a novel coach education training program. In doing so we uncover the frustrations and tensions in trying to balance innovation with prescribed process and policy. We conclude by making suggestions for further research specifically focused on the background of the key agents involved with the design, implementation and administration of coach education training programs in the competition-development context of the NCCP.
Resumo:
This paper presents a feasibility study on structural damage alarming and localization of long-span cable-supported bridges using multi-novelty indices formulated by monitoring-derived modal parameters. The proposed method which requires neither structural model nor damage model is applicable to structures of arbitrary complexity. With the intention to enhance the tolerance to measurement noise/uncertainty and the sensitivity to structural damage, an improved novelty index is formulated in terms of auto-associative neural networks (ANNs) where the output vector is designated to differ from the input vector while the training of the ANNs needs only the measured modal properties of the intact structure under in-service conditions. After validating the enhanced capability of the improved novelty index for structural damage alarming over the commonly configured novelty index, the performance of the improved novelty index for damage occurrence detection of large-scale bridges is examined through numerical simulation studies of the suspension Tsing Ma Bridge (TMB) and the cable-stayed Ting Kau Bridge (TKB) incurred with different types of structural damage. Then the improved novelty index is extended to formulate multi-novelty indices in terms of the measured modal frequencies and incomplete modeshape components for damage region identification. The capability of the formulated multi-novelty indices for damage region identification is also examined through numerical simulations of the TMB and TKB.
Resumo:
Tumour microenvironment greatly influences the development and metastasis of cancer progression. The development of three dimensional (3D) culture models which mimic that displayed in vivo can improve cancer biology studies and accelerate novel anticancer drug screening. Inspired by a systems biology approach, we have formed 3D in vitro bioengineered tumour angiogenesis microenvironments within a glycosaminoglycan-based hydrogel culture system. This microenvironment model can routinely recreate breast and prostate tumour vascularisation. The multiple cell types cultured within this model were less sensitive to chemotherapy when compared with two dimensional (2D) cultures, and displayed comparative tumour regression to that displayed in vivo. These features highlight the use of our in vitro culture model as a complementary testing platform in conjunction with animal models, addressing key reduction and replacement goals of the future. We anticipate that this biomimetic model will provide a platform for the in-depth analysis of cancer development and the discovery of novel therapeutic targets.
Resumo:
Menopausal transition can be challenging for many women. This study tested the effectiveness of an intervention delivered in different modes in decreasing menopausal symptoms in midlife women. The Women's Wellness Program (WWP) intervention was delivered to 225 Australian women aged between 40 and 65 years through three modes (i.e., on-line independent, face-to-face with nurse consultations, and on-line with virtual nurse consultations). All women in the study were provided with a 12-week Program Book outlining healthy lifestyle behaviors while women in the consultation groups were supported by a registered nurse who provide tailored health education and assisted with individual goal setting for exercise, healthy eating, smoking and alcohol consumption. Pre- and post-intervention data were collected on menopausal symptoms (Greene Climacteric Scale), health related quality of life (SF12), and modifiable lifestyle factors. Linear mixed-effect models showed an average 0.87 and 1.23 point reduction in anxiety (p < 0.01) and depression scores (p < 0.01) over time in all groups. Results also demonstrated reduced vasomotor symptoms (β = −0.19, SE = 0.10, p = 0.04) and sexual dysfunction (β = −0.17, SE = 0.06, p < 0.01) in all participants though women in the face-to-face group generally reported greater reductions than women in the other groups. This lifestyle intervention embedded within a wellness framework has the potential to reduce menopausal symptoms and improve quality of life in midlife women thus potentially enhancing health and well-being in women as they age. Of course, study replication is needed to confirm the intervention effects.
Resumo:
Organizations executing similar business processes need to understand the differences and similarities in activities performed across work environments. Presently, research interest is directed towards the potential of visualization for the display of process models, to support users in their analysis tasks. Although recent literature in process mining and comparison provide several methods and algorithms to perform process and log comparison, few contributions explore novel visualization approaches. This paper analyses process comparison from a design perspective, providing some practical visualization techniques as anal- ysis solutions (/to support process analysis). The design of the visual comparison has been tackled through three different points of view: the general model, the projected model and the side-by-side comparison in order to support the needs of business analysts. A case study is presented showing the application of process mining and visualization techniques to patient treatment across two Australian hospitals.
Resumo:
The design and fabrication of a proto-type four-rotor vertical take-off and landing (VTOL) aerial robot for use as indoor experimental robotics platform is presented. The flyer is termed an X4-flyer. A development of the dynamic model of the system is presented and a pilot augmentation control design is proposed.
Resumo:
The mining industry is highly suitable for the application of robotics and automation technology since the work is arduous, dangerous and often repetitive. This paper discusses a robust sensing system developed to find and trade the position of the hoist ropes of a dragline. Draglines are large `walking cranes' used in open-pit coal mining to remove the material covering the coal seam. The rope sensing system developed uses two time-of-flight laser scanners. The finding algorithm uses a novel data association and tracking strategy based on pairing rope data.
Resumo:
Draglines are extremely large machines that are widely used in open-cut coal mines for overburden stripping. Since 1994 we have been working toward the development of a computer control system capable of automatically driving a dragline for a large portion of its operating cycle. This has necessitated the development and experimental evaluation of sensor systems, machines models, closed-loop control controllers, and an operator interface. This paper describes our steps toward the goal through scale-model and full-scale field experimentation.
Resumo:
The mining industry is highly suitable for the application of robotics and automation technology since the work is arduous, dangerous and often repetitive. This paper describes the development of an automation system for a physically large and complex field robotic system - a 3,500 tonne mining machine (a dragline). The major components of the system are discussed with a particular emphasis on the machine/operator interface. A very important aspect of this system is that it must work cooperatively with a human operator, seamlessly passing the control back and forth in order to achieve the main aim - increased productivity.
Resumo:
The structural features of fatty acids in biodiesel, including degree of unsaturation, percentage of saturated fatty acids and average chain length, influence important fuel properties such as cetane number, iodine value, density, kinematic viscosity, higher heating value and oxidation stability. The composition of fatty acid esters within the fuel should therefore be in the correct ratio to ensure fuel properties are within international biodiesel standards such as ASTM 6751 or EN 14214. This study scrutinises the influence of fatty acid composition and individual fatty acids on fuel properties. Fuel properties were estimated based on published equations, and measured according to standard procedure ASTM D6751 and EN 14214 to confirm the influences of the fatty acid profile. Based on fatty acid profile-derived calculations, the cetane number of the microalgal biodiesel was estimated to be 11.6, but measured 46.5, which emphasises the uncertainty of the method used for cetane number calculation. Multi-criteria decision analysis (MCDA), PROMETHEE-GAIA, was used to determine the influence of individual fatty acids on fuel properties in the GAIA plane. Polyunsaturated fatty acids increased the iodine value and had a negative influence on cetane number. Kinematic viscosity was negatively influenced by some long chain polyunsaturated fatty acids such as C20:5 and C22:6 and some of the more common saturated fatty acids C14:0 and C18:0. The positive impact of average chain length on higher heating value was also confirmed in the GAIA plane
Resumo:
Background Currently, care providers and policy-makers internationally are working to promote normal birth. In Australia, such initiatives are being implemented without any evidence of the prevalence or determinants of normal birth as a multidimensional construct. This study aimed to better understand the determinants of normal birth (defined as without induction of labour, epidural/spinal/general anaesthesia, forceps/vacuum, caesarean birth, or episiotomy) using secondary analyses of data from a population survey of women in Queensland, Australia. Methods Women who birthed in Queensland during a two-week period in 2009 were mailed a survey approximately three months after birth. Women (n=772) provided retrospective data on their pregnancy, labour and birth preferences and experiences, socio-demographic characteristics, and reproductive history. A series of logistic regressions were conducted to determine factors associated with having labour, having a vaginal birth, and having a normal birth. Findings Overall, 81.9% of women had labour, 66.4% had a vaginal birth, and 29.6% had a normal birth. After adjusting for other significant factors, women had significantly higher odds of having labour if they birthed in a public hospital and had a pre-existing preference for a vaginal birth. Of women who had labour, 80.8% had a vaginal birth. Women who had labour had significantly higher odds of having a vaginal birth if they attended antenatal classes, did not have continuous fetal monitoring, felt able to ‘take their time’ in labour, and had a pre-existing preference for a vaginal birth. Of women who had a vaginal birth, 44.7% had a normal birth. Women who had a vaginal birth had significantly higher odds of having a normal birth if they birthed in a public hospital, birthed outside regular business hours, had mobility in labour, did not have continuous fetal monitoring, and were non-supine during birth. Conclusions These findings provide a strong foundation on which to base resources aimed at increasing informed decision-making for maternity care consumers, providers, and policy-makers alike. Research to evaluate the impact of modifying key clinical practices (e.g., supporting women׳s mobility during labour, facilitating non-supine positioning during birth) on the likelihood of a normal birth is an important next step.
Resumo:
Climate has been, throughout modern history, a primary attribute for attracting residents to the “Sunshine States” of Florida (USA) and Queensland (Australia). The first major group of settlers capitalized on the winter growing season to support a year-‐round agricultural economy. As these economies developed, the climate attracted tourism and retirement industries. Yet as Florida and Queensland have blossomed under beneficial climates, the stresses acting on the natural environment are exacting a toll. Southeast Florida and eastern Queensland are among the most vulnerable coastal metropolitan areas in the world. In these places the certainty of sea level rise is measurable with impacts, empirically observable, that will continue to increase regardless of any climate change mitigation.1 The cities of the subtropics share a series of paradoxes relating to climate, resources, environment, and culture. As the subtropical climate entices new residents and visitors there are increasing costs associated with urban infrastructure and the ravages of violent weather. The carefree lifestyle of subtropical cities is increasingly dependent on scarce water and energy resources and the flow of tangible goods that support a trade economy. The natural environment is no longer exploitable as the survival of the human environment is contingent upon the ability of natural ecosystems to absorb the impact of human actions. The quality of subtropical living is challenged by the mounting pressures of population growth and rapid urbanization yet urban form and contemporary building design fail to take advantage of the subtropical zone’s natural attributes of abundant sunshine, cooling breezes and warm temperatures. Yet, by building a global network of local knowledge, subtropical cities like Brisbane, the City of Gold Coast and Fort Lauderdale, are confidently leading the way with innovative and inventive solutions for building resiliency and adaptation to climate change. The Centre for Subtropical Design at Queensland University of Technology organized the first international Subtropical Cities conference in Brisbane, Australia, where the “fault-‐lines” of subtropical cities at breaking points were revealed. The second conference, held in 2008, shed a more optimistic light with the theme "From fault-‐lines to sight-‐lines -‐ subtropical urbanism in 20-‐20" highlighting the leadership exemplified in the vitality of small and large works from around the subtropical world. Yet beyond these isolated local actions the need for more cooperation and collaboration was identified as the key to moving beyond the problems of the present and foreseeable future. The spirit of leadership and collaboration has taken on new force, as two institutions from opposite sides of the globe joined together to host the 3rd international conference Subtropical Cities 2011 -‐ Subtropical Urbanism: Beyond Climate Change. The collaboration between Florida Atlantic University and the Queensland University of Technology to host this conference, for the first time in the United States, forges a new direction in international cooperative research to address urban design solutions that support sustainable behaviours, resiliency and adaptation to sea level rise, green house gas (GHG) reduction, and climate change research in the areas of architecture and urban design, planning, and public policy. With southeast Queensland and southern Florida as contributors to this global effort among subtropical urban regions that share similar challenges, opportunities, and vulnerabilities our mutual aim is to advance the development and application of local knowledge to the global problems we share. The conference attracted over 150 participants from four continents. Presentations by authors were organized into three sub-‐themes: Cultural/Place Identity, Environment and Ecology, and Social Economics. Each of the 22 papers presented underwent a double-‐blind peer review by a panel of international experts among the disciplines and research areas represented. The Centre for Subtropical Design at the Queensland University of Technology is leading Australia in innovative environmental design with a multi-‐disciplinary focus on creating places that are ‘at home’ in the warm humid subtropics. The Broward Community Design Collaborative at Florida Atlantic University's College for Design and Social Inquiry has built an interdisciplinary collaboration that is unique in the United States among the units of Architecture, Urban and Regional Planning, Social Work, Public Administration, together with the College of Engineering and Computer Science, the College of Science, and the Center for Environmental Studies, to engage in funded action research through design inquiry to solve the problems of development for urban resiliency and environmental sustainment. As we move beyond debates about climate change -‐ now acting upon us -‐ the subtropical urban regions of the world will continue to convene to demonstrate the power of local knowledge against global forces, thereby inspiring us as we work toward everyday engagement and action that can make our cities more livable, equitable, and green.
Resumo:
The research reported in this paper explores autonomous technologies for agricultural farming application and is focused on the development of multiple-cooperative agricultural robots (AgBots). These are highly autonomous, small, lightweight, and unmanned machines that operate cooperatively (as opposed to a traditional single heavy machine) and are suited to work on broadacre land (large-scale crop operations on land parcels greater than 4,000m2). Since this is a new, and potentially disruptive technology, little is yet known about farmer attitudes towards robots, how robots might be incorporated into current farming practice, and how best to marry the capability of the robot with the work of the farmer. This paper reports preliminary insights (with a focus on farmer-robot control) gathered from field visits and contextual interviews with farmers, and contributes knowledge that will enable further work toward the design and application of agricultural robotics.
Resumo:
Seagoing vessels have to undergo regular inspections, which are currently performed manually by ship surveyors. The main cost factor in a ship inspection is to provide access to the different areas of the ship, since the surveyor has to be close to the inspected parts, usually within arm's reach, either to perform a visual analysis or to take thickness measurements. The access to the structural elements in cargo holds, e.g., bulkheads, is normally provided by staging or by 'cherry-picking' cranes. To make ship inspections safer and more cost-efficient, we have introduced new inspection methods, tools, and systems, which have been evaluated in field trials, particularly focusing on cargo holds. More precisely, two magnetic climbing robots and a micro-aerial vehicle, which are able to assist the surveyor during the inspection, are introduced. Since localization of inspection data is mandatory for the surveyor, we also introduce an external localization system that has been verified in field trials, using a climbing inspection robot. Furthermore, the inspection data collected by the robotic systems are organized and handled by a spatial content management system that enables us to compare the inspection data of one survey with those from another, as well as to document the ship inspection when the robot team is used. Image-based defect detection is addressed by proposing an integrated solution for detecting corrosion and cracks. The systems' performance is reported, as well as conclusions on their usability, all in accordance with the output of field trials performed onboard two different vessels under real inspection conditions.
Resumo:
The inspection of marine vessels is currently performed manually. Inspectors use tools (e.g. cameras and devices for non-destructive testing) to detect damaged areas, cracks, and corrosion in large cargo holds, tanks, and other parts of a ship. Due to the size and complex geometry of most ships, ship inspection is time-consuming and expensive. The EU-funded project INCASS develops concepts for a marine inspection robotic assistant system to improve and automate ship inspections. In this paper, we introduce our magnetic wall–climbing robot: Marine Inspection Robotic Assistant (MIRA). This semiautonomous lightweight system is able to climb a vessels steel frame to deliver on-line visual inspection data. In addition, we describe the design of the robot and its building subsystems as well as its hardware and software components.