725 resultados para Gene network


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We write in response to the letter by Liu et al. [1] commenting on our article, ‘‘Mesenchymal Stem Cells Regulate Angiogenesis According to Their Mechanical Environment’’ [2]. The study by Liu et al. demonstrates that the commonly used endogeneous reference gene (ERG), b-actin, is upregulated by mechanical loading, indicating a potential bias in the determined target gene expression when normalizing to b-actin, such as in our report on unchanged vascular endothelial growth factor (VEGF) and hypoxia-inducible factors (HIF)-1a mRNA levels in mechanically loaded mesenchymal stem cells (MSCs).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agent-based modelling (ABM), like other modelling techniques, is used to answer specific questions from real world systems that could otherwise be expensive or impractical. Its recent gain in popularity can be attributed to some degree to its capacity to use information at a fine level of detail of the system, both geographically and temporally, and generate information at a higher level, where emerging patterns can be observed. This technique is data-intensive, as explicit data at a fine level of detail is used and it is computer-intensive as many interactions between agents, which can learn and have a goal, are required. With the growing availability of data and the increase in computer power, these concerns are however fading. Nonetheless, being able to update or extend the model as more information becomes available can become problematic, because of the tight coupling of the agents and their dependence on the data, especially when modelling very large systems. One large system to which ABM is currently applied is the electricity distribution where thousands of agents representing the network and the consumers’ behaviours are interacting with one another. A framework that aims at answering a range of questions regarding the potential evolution of the grid has been developed and is presented here. It uses agent-based modelling to represent the engineering infrastructure of the distribution network and has been built with flexibility and extensibility in mind. What distinguishes the method presented here from the usual ABMs is that this ABM has been developed in a compositional manner. This encompasses not only the software tool, which core is named MODAM (MODular Agent-based Model) but the model itself. Using such approach enables the model to be extended as more information becomes available or modified as the electricity system evolves, leading to an adaptable model. Two well-known modularity principles in the software engineering domain are information hiding and separation of concerns. These principles were used to develop the agent-based model on top of OSGi and Eclipse plugins which have good support for modularity. Information regarding the model entities was separated into a) assets which describe the entities’ physical characteristics, and b) agents which describe their behaviour according to their goal and previous learning experiences. This approach diverges from the traditional approach where both aspects are often conflated. It has many advantages in terms of reusability of one or the other aspect for different purposes as well as composability when building simulations. For example, the way an asset is used on a network can greatly vary while its physical characteristics are the same – this is the case for two identical battery systems which usage will vary depending on the purpose of their installation. While any battery can be described by its physical properties (e.g. capacity, lifetime, and depth of discharge), its behaviour will vary depending on who is using it and what their aim is. The model is populated using data describing both aspects (physical characteristics and behaviour) and can be updated as required depending on what simulation is to be run. For example, data can be used to describe the environment to which the agents respond to – e.g. weather for solar panels, or to describe the assets and their relation to one another – e.g. the network assets. Finally, when running a simulation, MODAM calls on its module manager that coordinates the different plugins, automates the creation of the assets and agents using factories, and schedules their execution which can be done sequentially or in parallel for faster execution. Building agent-based models in this way has proven fast when adding new complex behaviours, as well as new types of assets. Simulations have been run to understand the potential impact of changes on the network in terms of assets (e.g. installation of decentralised generators) or behaviours (e.g. response to different management aims). While this platform has been developed within the context of a project focussing on the electricity domain, the core of the software, MODAM, can be extended to other domains such as transport which is part of future work with the addition of electric vehicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global awareness for cleaner and renewable energy is transforming the electricity sector at many levels. New technologies are being increasingly integrated into the electricity grid at high, medium and low voltage levels, new taxes on carbon emissions are being introduced and individuals can now produce electricity, mainly through rooftop photovoltaic (PV) systems. While leading to improvements, these changes also introduce challenges, and a question that often rises is ‘how can we manage this constantly evolving grid?’ The Queensland Government and Ergon Energy, one of the two Queensland distribution companies, have partnered with some Australian and German universities on a project to answer this question in a holistic manner. The project investigates the impact the integration of renewables and other new technologies has on the physical structure of the grid, and how this evolving system can be managed in a sustainable and economical manner. To aid understanding of what the future might bring, a software platform has been developed that integrates two modelling techniques: agent-based modelling (ABM) to capture the characteristics of the different system units accurately and dynamically, and particle swarm optimization (PSO) to find the most economical mix of network extension and integration of distributed generation over long periods of time. Using data from Ergon Energy, two types of networks (3 phase, and Single Wired Earth Return or SWER) have been modelled; three-phase networks are usually used in dense networks such as urban areas, while SWER networks are widely used in rural Queensland. Simulations can be performed on these networks to identify the required upgrades, following a three-step process: a) what is already in place and how it performs under current and future loads, b) what can be done to manage it and plan the future grid and c) how these upgrades/new installations will perform over time. The number of small-scale distributed generators, e.g. PV and battery, is now sufficient (and expected to increase) to impact the operation of the grid, which in turn needs to be considered by the distribution network manager when planning for upgrades and/or installations to stay within regulatory limits. Different scenarios can be simulated, with different levels of distributed generation, in-place as well as expected, so that a large number of options can be assessed (Step a). Once the location, sizing and timing of assets upgrade and/or installation are found using optimisation techniques (Step b), it is possible to assess the adequacy of their daily performance using agent-based modelling (Step c). One distinguishing feature of this software is that it is possible to analyse a whole area at once, while still having a tailored solution for each of the sub-areas. To illustrate this, using the impact of battery and PV can have on the two types of networks mentioned above, three design conditions can be identified (amongst others): · Urban conditions o Feeders that have a low take-up of solar generators, may benefit from adding solar panels o Feeders that need voltage support at specific times, may be assisted by installing batteries · Rural conditions - SWER network o Feeders that need voltage support as well as peak lopping may benefit from both battery and solar panel installations. This small example demonstrates that no single solution can be applied across all three areas, and there is a need to be selective in which one is applied to each branch of the network. This is currently the function of the engineer who can define various scenarios against a configuration, test them and iterate towards an appropriate solution. Future work will focus on increasing the level of automation in identifying areas where particular solutions are applicable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intrinsic or acquired resistance to chemotherapeutic agents is a common phenomenon and a major challenge in the treatment of cancer patients. Chemoresistance is defined by a complex network of factors including multi-drug resistance proteins, reduced cellular uptake of the drug, enhanced DNA repair, intracellular drug inactivation, and evasion of apoptosis. Pre-clinical models have demonstrated that many chemotherapy drugs, such as platinum-based agents, antracyclines, and taxanes, promote the activation of the NF-κB pathway. NF-κB is a key transcription factor, playing a role in the development and progression of cancer and chemoresistance through the activation of a multitude of mediators including anti-apoptotic genes. Consequently, NF-κB has emerged as a promising anti-cancer target. Here, we describe the role of NF-κB in cancer and in the development of resistance, particularly cisplatin. Additionally, the potential benefits and disadvantages of targeting NF-κB signaling by pharmacological intervention will be addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An Artificial Neural Network (ANN) is a computational modeling tool which has found extensive acceptance in many disciplines for modeling complex real world problems. An ANN can model problems through learning by example, rather than by fully understanding the detailed characteristics and physics of the system. In the present study, the accuracy and predictive power of an ANN was evaluated in predicting kinetic viscosity of biodiesels over a wide range of temperatures typically encountered in diesel engine operation. In this model, temperature and chemical composition of biodiesel were used as input variables. In order to obtain the necessary data for model development, the chemical composition and temperature dependent fuel properties of ten different types of biodiesels were measured experimentally using laboratory standard testing equipments following internationally recognized testing procedures. The Neural Networks Toolbox of MatLab R2012a software was used to train, validate and simulate the ANN model on a personal computer. The network architecture was optimised following a trial and error method to obtain the best prediction of the kinematic viscosity. The predictive performance of the model was determined by calculating the absolute fraction of variance (R2), root mean squared (RMS) and maximum average error percentage (MAEP) between predicted and experimental results. This study found that ANN is highly accurate in predicting the viscosity of biodiesel and demonstrates the ability of the ANN model to find a meaningful relationship between biodiesel chemical composition and fuel properties at different temperature levels. Therefore the model developed in this study can be a useful tool in accurately predict biodiesel fuel properties instead of undertaking costly and time consuming experimental tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A decision-making framework for image-guided radiotherapy (IGRT) is being developed using a Bayesian Network (BN) to graphically describe, and probabilistically quantify, the many interacting factors that are involved in this complex clinical process. Outputs of the BN will provide decision-support for radiation therapists to assist them to make correct inferences relating to the likelihood of treatment delivery accuracy for a given image-guided set-up correction. The framework is being developed as a dynamic object-oriented BN, allowing for complex modelling with specific sub-regions, as well as representation of the sequential decision-making and belief updating associated with IGRT. A prototype graphic structure for the BN was developed by analysing IGRT practices at a local radiotherapy department and incorporating results obtained from a literature review. Clinical stakeholders reviewed the BN to validate its structure. The BN consists of a sub-network for evaluating the accuracy of IGRT practices and technology. The directed acyclic graph (DAG) contains nodes and directional arcs representing the causal relationship between the many interacting factors such as tumour site and its associated critical organs, technology and technique, and inter-user variability. The BN was extended to support on-line and off-line decision-making with respect to treatment plan compliance. Following conceptualisation of the framework, the BN will be quantified. It is anticipated that the finalised decision-making framework will provide a foundation to develop better decision-support strategies and automated correction algorithms for IGRT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synaptic changes at sensory inputs to the dorsal nucleus of the lateral amygdala (LAd) play a key role in the acquisition and storage of associative fear memory. However, neither the temporal nor spatial architecture of the LAd network response to sensory signals is understood. We developed a method for the elucidation of network behavior. Using this approach, temporally patterned polysynaptic recurrent network responses were found in LAd (intra-LA), both in vitro and in vivo, in response to activation of thalamic sensory afferents. Potentiation of thalamic afferents resulted in a depression of intra-LA synaptic activity, indicating a homeostatic response to changes in synaptic strength within the LAd network. Additionally, the latencies of thalamic afferent triggered recurrent network activity within the LAd overlap with known later occurring cortical afferent latencies. Thus, this recurrent network may facilitate temporal coincidence of sensory afferents within LAd during associative learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Individuals and communities are exposed to traumatic events, those that are accidents or naturally occurring and those that are intentional or human made. Although resilience is the expected response, for some, posttraumatic stress disorder may be the outcome. Brain models of PTSD require understanding the phenomenology of the disorder and the brain “break down” that occurs. Among several models, importantly, is the perspective that PTSD is a “forgetting” disorder. Other elements in the onset and triggers of PTSD can identify further models to examine at the bench. New studies of the 5-HT2A receptor, the glucocorticoid receptor, p11, mitochondrial genes and cannabinoids are bringing new perspectives to understanding brain function in PTSD. Effective treatments indicate areas for bench research on the mechanisms of the disorder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular mechanisms involved in non‑small cell lung cancer tumourigenesis are largely unknown; however, recent studies have suggested that long non-coding RNAs (lncRNAs) are likely to play a role. In this study, we used public databases to identify an mRNA-like, candidate long non-coding RNA, GHSROS (GHSR opposite strand), transcribed from the antisense strand of the ghrelin receptor gene, growth hormone secretagogue receptor (GHSR). Quantitative real-time RT-PCR revealed higher expression of GHSROS in lung cancer tissue compared to adjacent, non-tumour lung tissue. In common with many long non-coding RNAs, GHSROS is 5' capped and 3' polyadenylated (mRNA-like), lacks an extensive open reading frame and harbours a transposable element. Engineered overexpression of GHSROS stimulated cell migration in the A549 and NCI-H1299 non-small cell lung cancer cell lines, but suppressed cell migration in the Beas-2B normal lung-derived bronchoepithelial cell line. This suggests that GHSROS function may be dependent on the oncogenic context. The identification of GHSROS, which is expressed in lung cancer and stimulates cell migration in lung cancer cell lines, contributes to the growing number of non-coding RNAs that play a role in the regulation of tumourigenesis and metastatic cancer progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We previously showed that integrin alphavbeta3 overexpression and engagement by its ligand vitronectin increased adhesion, motility, and proliferation of human ovarian cancer cells. In search of differentially regulated genes involved in these tumor biological events, we previously identified the integrin-linked kinase (ILK) to be under control of alphavbeta3. In the present investigation we demonstrated significantly upregulated ILK protein as a function of alphavbeta3 in two ovarian cancer cell lines, OV-MZ-6 and OVCAR-3, and proved co-localization at the surface of alphavbeta3-overexpressing cells adherent to vitronectin. Increase of ILK protein was reflected by enhanced ILK promoter activity, an effect, which we further characterized with regard to transcriptional response elements involved. Abrogation of NF-kappaB/c-rel or p53 binding augmented ILK promoter activity and preserved induction by alphavbeta3. The AP1-mutant exhibited decreased promoter activity but was also still inducible by alphavbeta3. Disruption of the two DNA consensus motifs for Ets proteins led to divergent observations: mutation of the Ets motif at promoter position -462 bp did not significantly alter promoter activity but still allowed response to alphavbeta3. In contrast, disruption of the second Ets motif at position -85 bp did not only lead to slightly diminished promoter activity but also, in that case, abrogated ILK promoter induction by alphavbeta3. Subsequent co-transfection studies with ets-1 in the presence of the second Ets motif led to additional induction of ILK promoter activity. Taken together, these data suggest that ets-1 binding to the second Ets DNA motif strongly contributes to alphavbeta3-mediated ILK upregulation. By increasing ILK as an important integrin-proximal kinase, alphavbeta3 may promote its intracellular signaling and tumor biological processes arising thereof in favor of ovarian cancer metastasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodiesel, produced from renewable feedstock represents a more sustainable source of energy and will therefore play a significant role in providing the energy requirements for transportation in the near future. Chemically, all biodiesels are fatty acid methyl esters (FAME), produced from raw vegetable oil and animal fat. However, clear differences in chemical structure are apparent from one feedstock to the next in terms of chain length, degree of unsaturation, number of double bonds and double bond configuration-which all determine the fuel properties of biodiesel. In this study, prediction models were developed to estimate kinematic viscosity of biodiesel using an Artificial Neural Network (ANN) modelling technique. While developing the model, 27 parameters based on chemical composition commonly found in biodiesel were used as the input variables and kinematic viscosity of biodiesel was used as output variable. Necessary data to develop and simulate the network were collected from more than 120 published peer reviewed papers. The Neural Networks Toolbox of MatLab R2012a software was used to train, validate and simulate the ANN model on a personal computer. The network architecture and learning algorithm were optimised following a trial and error method to obtain the best prediction of the kinematic viscosity. The predictive performance of the model was determined by calculating the coefficient of determination (R2), root mean squared (RMS) and maximum average error percentage (MAEP) between predicted and experimental results. This study found high predictive accuracy of the ANN in predicting fuel properties of biodiesel and has demonstrated the ability of the ANN model to find a meaningful relationship between biodiesel chemical composition and fuel properties. Therefore the model developed in this study can be a useful tool to accurately predict biodiesel fuel properties instead of undertaking costly and time consuming experimental tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The increasing number of assembled mammalian genomes makes it possible to compare genome organisation across mammalian lineages and reconstruct chromosomes of the ancestral marsupial and therian (marsupial and eutherian) mammals. However, the reconstruction of ancestral genomes requires genome assemblies to be anchored to chromosomes. The recently sequenced tammar wallaby (Macropus eugenii) genome was assembled into over 300,000 contigs. We previously devised an efficient strategy for mapping large evolutionarily conserved blocks in non-model mammals, and applied this to determine the arrangement of conserved blocks on all wallaby chromosomes, thereby permitting comparative maps to be constructed and resolve the long debated issue between a 2n=14 and 2n=22 ancestral marsupial karyotype. RESULTS: We identified large blocks of genes conserved between human and opossum, and mapped genes corresponding to the ends of these blocks by fluorescence in situ hybridization (FISH). A total of 242 genes was assigned to wallaby chromosomes in the present study, bringing the total number of genes mapped to 554 and making it the most densely cytogenetically mapped marsupial genome. We used these gene assignments to construct comparative maps between wallaby and opossum, which uncovered many intrachromosomal rearrangements, particularly for genes found on wallaby chromosomes X and 3. Expanding comparisons to include chicken and human permitted the putative ancestral marsupial (2n=14) and therian mammal (2n=19) karyotypes to be reconstructed. CONCLUSIONS: Our physical mapping data for the tammar wallaby has uncovered the events shaping marsupial genomes and enabled us to predict the ancestral marsupial karyotype, supporting a 2n=14 ancestor. Futhermore, our predicted therian ancestral karyotype has helped to understand the evolution of the ancestral eutherian genome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a new distributed coordination approach to make load leveling, using Energy Storage Units (ESUs) in LV network. The proposed distributed control strategy is based on consensus algorithm which shares the required active power equally among the ESUs with respect to their rating. To show the effectiveness of the proposed approach, a typical radial LV network is simulated as a case study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voltage rise and drop are the main power quality challenges in Low Voltage (LV) network with Renewable Energy (RE) generators. This paper proposes a new voltage support strategy based on coordination of multiple Distribution Static Synchronous Compensators (DSTATCOMs) using consensus algorithm. The study focuses on LV network with PV as the RE source for customers. The proposed approach applied to a typical residential LV network and its advantages are shown comparing with other voltage control strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The operation of Autonomous Underwater Vehicles (AUVs) within underwater sensor network fields provides an opportunity to reuse the network infrastructure for long baseline localisation of the AUV. Computationally efficient localisation can be accomplished using off-the-shelf hardware that is comparatively inexpensive and which could already be deployed in the environment for monitoring purposes. This paper describes the development of a particle filter based localisation system which is implemented onboard an AUV in real-time using ranging information obtained from an ad-hoc underwater sensor network. An experimental demonstration of this approach was conducted in a lake with results presented illustrating network communication and localisation performance.