578 resultados para 290400 Automotive Engineering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the biodiesel properties and effects of blends of oil methyl ester petroleum diesel on a CI direct injection diesel engine is investigated. Blends were obtained from the marine dinoflagellate Crypthecodinium cohnii and waste cooking oil. The experiment was conducted using a four-cylinder, turbo-charged common rail direct injection diesel engine at four loads (25%, 50%, 75% and 100%). Three blends (10%, 20% and 50%) of microalgae oil methyl ester and a 20% blend of waste cooking oil methyl ester were compared to petroleum diesel. To establish suitability of the fuels for a CI engine, the effects of the three microalgae fuel blends at different engine loads were assessed by measuring engine performance, i.e. mean effective pressure (IMEP), brake mean effective pressure (BMEP), in cylinder pressure, maximum pressure rise rate, brake-specific fuel consumption (BSFC), brake thermal efficiency (BTE), heat release rate and gaseous emissions (NO, NOx,and unburned hydrocarbons (UHC)). Results were then compared to engine performance characteristics for operation with a 20% waste cooking oil/petroleum diesel blend and petroleum diesel. In addition, physical and chemical properties of the fuels were measured. Use of microalgae methyl ester reduced the instantaneous cylinder pressure and engine output torque, when compared to that of petroleum diesel, by a maximum of 4.5% at 50% blend at full throttle. The lower calorific value of the microalgae oil methyl ester blends increased the BSFC, which ultimately reduced the BTE by up to 4% at higher loads. Minor reductions of IMEP and BMEP were recorded for both the microalgae and the waste cooking oil methyl ester blends at low loads, with a maximum of 7% reduction at 75% load compared to petroleum diesel. Furthermore, compared to petroleum diesel, gaseous emissions of NO and NOx, increased for operations with biodiesel blends. At full load, NO and NOx emissions increased by 22% when 50% microalgae blends were used. Petroleum diesel and a 20% blend of waste cooking oil methyl ester had emissions of UHC that were similar, but those of microalgae oil methyl ester/petroleum diesel blends were reduced by at least 50% for all blends and engine conditions. The tested microalgae methyl esters contain some long-chain, polyunsaturated fatty acid methyl esters (FAMEs) (C22:5 and C22:6) not commonly found in terrestrial-crop-derived biodiesels yet all fuel properties were satisfied or were very close to the ASTM 6751-12 and EN14214 standards. Therefore, Crypthecodinium cohnii- derived microalgae biodiesel/petroleum blends of up to 50% are projected to meet all fuel property standards and, engine performance and emission results from this study clearly show its suitability for regular use in diesel engines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of Intelligent Transportation Systems (ITS) were used with an advanced driving simulator to assess its influence on driving behavior. Three types of ITS interventions namely, Video in-vehicle (ITS1), Audio in-vehicle (ITS2), and On-road flashing marker (ITS3) were tested. Then, the results from the driving simulator were used as inputs for a developed model using a traffic micro-simulation (Vissim 5.4) in order to assess the safety interventions. Using a driving simulator, 58 participants were required to drive through a number of active and passive crossings with and without an ITS device and in the presence or absence of an approaching train. The effect of driver behavior changing in terms of speed and compliance rate was greater at passive crossings than at active crossings. The difference in speed of drivers approaching ITS devices was very small which indicates that ITS helps drivers encounter the crossings in a safer way. Since the current traffic simulation was not able to replicate a dynamic speed change or a probability of stopping that varies based on different ITS safety devices, some modifications of the current traffic simulation were conducted. The results showed that exposure to ITS devices at active crossings did not influence the drivers’ behavior significantly according to the traffic performance indicators used, such as delay time, number of stops, speed, and stopped delay. On the other hand, the results of traffic simulation for passive crossings, where low traffic volumes and low train headway normally occur, showed that ITS devices improved overall traffic performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Society is increasingly calling for professionals across government, industry, business and civil society to be able to problem-solve issues related to climate change and sustainable development as part of their work. In particular there is an emerging realisation of the fundamental need to swiftly reduce the growing demand for energy across society, and to then meet the demand with low emissions options. A key ingredient to addressing such issues is equipping professionals with emerging knowledge and skills to address energy challenges in all aspects of their work. The Council of Australian Governments has recognised this need, signing the National Partnership Agreement on Energy Efficiency in July 2009, which included a commitment to assist business and industry obtain the knowledge, skills and capacity to pursue cost-effective energy efficiency opportunities.2 Engineering will play a critical part among the professions, with Engineers Australia acknowledging that, ‘The need to make changes in the way energy is used and supplied throughout the world represents the greatest challenge to engineers in moving toward sustainability.’

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report presents the findings of an investigation of energy efficiency resources for undergraduate engineering education, undertaken by web-based research, conversations with educators, and a university survey. The investigation draws on the results of a number of previous investigations undertaken by the research team for NFEE related to energy efficiency education and presents the following findings and recommendations, as explained in greater detail in the body of the report. The findings suggest that even though certain EE concepts and principles have been identified by lecturers as being important there is little to no coverage of a number of these concepts in some programs/courses. Similarly, many topics relating to the most important EE workforce skills and significant shortages as identified in industry research, do not rate highly in terms of both perceived importance by lecturers, or coverage within existing courses. Overall, these findings suggest that despite growing awareness of the importance of EE in both industry and academia, the current depth and breadth of EE content in courses does not reflect this. It confirms that efforts in these areas can be better supported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Problem solving is an essential element of civil engineering education. It has been observed that students are best able to understand civil engineering theory when there is a practical application of it. Teaching theory alone has led to lower levels of comprehension and motivation and a correspondingly higher rate of failure and “drop-out”. This paper analyses the effectiveness of introducing practical design projects at an early stage within a civil engineering undergraduate program at Queensland University of Technology. In two of the essential basic subjects, Engineering Mechanics and Steel Structures, model projects which simulate realistic engineering exercises were introduced. Students were required to work in small groups to analyse, design and build the lightest / most efficient model bridges made of specific materials such as spaghetti, drinking straw, paddle pop sticks and balsa wood and steel columns for a given design loading/target capacity. The paper traces the success of the teaching strategy at each stage from its introduction through to the final student and staff evaluation.