678 resultados para Remain
Resumo:
According to 2011 Australian Census figures, embedded creative employees (creative employees not working in the core Creative Industries) make up 2 per cent (or a total of 17 635) of manufacturing industry employees. The average for all industries is 1.6 per cent. In the 2011–2012 financial year the manufacturing industry formed 7.3 per cent of Australia’s gross domestic product (GDP), contributing approximately AU$106.5 billion to the economy (Department of Industry, Innovation, Science, Research and Tertiary Education 2013). Manufacturing is central to innovation, accounting for over one-quarter of all business expenditure in R&D in 2010–2011, representing around AU$4.8 billion invested in R&D (ibid.). Facing challenges such as sustainability concerns, ever-increasing offshore production and the global financial crisis, the Australian manufacturing industry needs to remain relevant and competitive to succeed. Innovation is one way to do this. Given the contribution of the manufacturing industry to the Australian economy, and the above-average portion of embedded creatives in manufacturing, it is important to consider what exactly embedded creatives add to the industry. This chapter, inspired by the Getting Creative in Healthcare report (Pagan, Higgs and Cunningham 2008), examines the contribution of embedded creatives to innovation in the manufacturing industry via case studies and supplemental data.
Resumo:
Epithelial-to-mesenchymal transition (EMT) phenomena endow epithelial cells with enhanced migratory and invasive potential, and as such, have been implicated in many physiological and pathological processes requiring cell migration/invasion. Although their involvement in the metastatic cascade is still a subject of debate, data are accumulating to demonstrate the existence of EMT phenotypes in primary human tumors, describe enhanced metastatic potential of EMT derivatives in animal models, and report EMT attributes in circulating tumor cells (CTCs). The relationships between EMT and CTCs remain largely unexplored, and we review here in vitro and in vivo data supporting a putative role of EMT processes in CTC generation and survival.
Resumo:
This paper seeks to explain how the selective securitization of infectious disease arose, and to analyze the policy successes from this move. It is argued that despite some success, such as the revised International Health Regulations (IHR) in 2005, there remain serious deficiencies in the political outputs from the securitization of infectious disease.
Resumo:
The loss of peripheral vision impairs spatial learning and navigation. However, the mechanisms underlying these impairments remain poorly understood. One advantage of having peripheral vision is that objects in an environment are easily detected and readily foveated via eye movements. The present study examined this potential benefit of peripheral vision by investigating whether competent performance in spatial learning requires effective eye movements. In Experiment 1, participants learned room-sized spatial layouts with or without restriction on direct eye movements to objects. Eye movements were restricted by having participants view the objects through small apertures in front of their eyes. Results showed that impeding effective eye movements made subsequent retrieval of spatial memory slower and less accurate. The small apertures also occluded much of the environmental surroundings, but the importance of this kind of occlusion was ruled out in Experiment 2 by showing that participants exhibited intact learning of the same spatial layouts when luminescent objects were viewed in an otherwise dark room. Together, these findings suggest that one of the roles of peripheral vision in spatial learning is to guide eye movements, highlighting the importance of spatial information derived from eye movements for learning environmental layouts.
Resumo:
The present study investigated how object locations learned separately are integrated and represented as a single spatial layout in memory. Two experiments were conducted in which participants learned a room-sized spatial layout that was divided into two sets of five objects. Results suggested that integration across sets was performed efficiently when it was done during initial encoding of the environment but entailed cost in accuracy when it was attempted at the time of memory retrieval. These findings suggest that, once formed, spatial representations in memory generally remain independent and integrating them into a single representation requires additional cognitive processes.
Resumo:
Social media is playing an ever-increasing role in both viewers engagement with television and in the television industries evaluation of programming, in Australia – which is the focus of our study - and beyond. Twitter hashtags and viewer comments are increasingly incorporated into broadcasts, while Facebook fan pages provide a means of marketing upcoming shows and television personalities directly into the social media feed of millions of users. Additionally, bespoke applications such as FanGo and ZeeBox, which interact with the mainstream social networks, are increasingly being utilized by broadcasters for interactive elements of programming (c.f. Harrington, Highfield and Bruns, 2012). However, both the academic and industry study of these platforms has focused on the measure of content during the specific broadcast of the show, or a period surrounding it (e.g. 3 hours before until 3 am the next day, in the case of 2013 Nielsen SocialGuide reports). In this paper, we argue that this focus ignores a significant period for both television producers and advertisers; the lead-up to the program. If, as we argue elsewhere (Bruns, Woodford, Highfield & Prowd, forthcoming), users are persuaded to engage with content both by advertising of the Twitter hash-tag or Facebook page and by observing their network connections engaging with such content, the period before and between shows may have a significant impact on a viewers likelihood to watch a show. The significance of this period for broadcasters is clearly highlighted by the efforts they afford to advertising forthcoming shows through several channels, including television and social media, but also more widely. Biltereyst (2004, p.123) has argued that reality television generates controversy to receive media attention, and our previous small-scale work on reality shows during 2013 and 2014 supports the theory that promoting controversial behavior is likely to lead to increased viewing (Woodford & Prowd, 2014a). It remains unclear, however, to what extent this applies to other television genres. Similarly, while networks use of social media has been increasing, best practices remain unclear. Thus, by applying our telemetrics, that is social media metrics for television based on sabermetric approaches (Woodford, Prowd & Bruns, forthcoming; c.f. Woodford & Prowd, 2014b), to the period between shows, we are able to better understand the period when key viewing decisions may be made, to establish the significance of observing discussions within your network during the period between shows, and identify best practice examples of promoting a show using social media.
Resumo:
A national survey to estimate vacancy rates of Certified Registered Nurse Anesthetists (CRNAs) in hospitals and ambulatory surgical centers was conducted in 2007. Poisson regression methods were used to improve the precision of the estimates. A significant increase in the estimated vacancy rate was reported for hospitals relative to an earlier study from 2002, although it is important to note that there were some methodological differences between the 2 surveys explaining part of the increase. Results from this study found the vacancy rate was higher in rural hospitals than in nonrural hospitals, and it was lower in ambulatory surgical centers. A number of simulations were run to predict the effects of relevant changes in the market for surgeries and number of CRNAs, which were compared to the predictions from the previous survey. The remarkable factor since the last survey was the unusually large rate of new CRNAs entering the market, yet the vacancy rates remain relatively high.
Resumo:
The present study compares the effects of two different material processing techniques on modifying hydrophilic SiO2 nanoparticles. In one method, the nanoparticles undergo plasma treatment by using a custom-developed atmospheric-pressure non-equilibrium plasma reactor. With the other method, they undergo chemical treatment which grafts silane groups onto their surface and turns them into hydrophobic. The treated nanoparticles are then used to synthesize epoxy resin-based nanocomposites for electrical insulation applications. Their characteristics are investigated and compared with the pure epoxy resin and nanocomposite fabricated with unmodified nanofillers counterparts. The dispersion features of the nanoparticles in the epoxy resin matrix are examined through scanning electron microscopy (SEM) images. All samples show evidence that the agglomerations are smaller than 30 nm in their diameters. This indicates good dispersion uniformity. The Weibull plot of breakdown strength and the recorded partial discharge (PD) events of the epoxy resin/plasma-treated hydrophilic SiO2 nanocomposite (ER/PTI) suggest that the plasma-treated specimen yields higher breakdown strength and lower PD magnitude as compared to the untreated ones. In contrast, surprisingly, lower breakdown strength is found for the nanocomposite made by the chemically treated hydrophobic particles, whereas the PD magnitude and PD numbers remain at a similar level as the plasma-treated ones.
Resumo:
Spreading cell fronts are essential features of development, repair and disease processes. Many mathematical models used to describe the motion of cell fronts, such as Fisher’s equation, invoke a mean–field assumption which implies that there is no spatial structure, such as cell clustering, present. Here, we examine the presence of spatial structure using a combination of in vitro circular barrier assays, discrete random walk simulations and pair correlation functions. In particular, we analyse discrete simulation data using pair correlation functions to show that spatial structure can form in a spreading population of cells either through sufficiently strong cell–to–cell adhesion or sufficiently rapid cell proliferation. We analyse images from a circular barrier assay describing the spreading of a population of MM127 melanoma cells using the same pair correlation functions. Our results indicate that the spreading melanoma cell populations remain very close to spatially uniform, suggesting that the strength of cell–to–cell adhesion and the rate of cell proliferation are both sufficiently small so as not to induce any spatial patterning in the spreading populations.
Resumo:
Plasma nanoscience is an emerging multidisciplinary research field at the cutting edge of a large number of disciplines including but not limited to physics and chemistry of plasmas and gas discharges, materials science, surface science, nanoscience and nanotechnology, solid-state physics, space physics and astrophysics, photonics, optics, plasmonics, spintronics, quantum information, physical chemistry, biomedical sciences and related engineering subjects. This paper examines the origin, progress and future perspectives of this research field driven by the global scientific and societal challenges. The future potential of plasma nanoscience to remain a highly topical area in the global research and technological agenda in the age of fundamental-level control for a sustainable future is assessed using a framework of the five Grand Challenges for Basic Energy Sciences recently mapped by the US Department of Energy. It is concluded that the ongoing research is very relevant and is expected to substantially expand to competitively contribute to the solution of all of these Grand Challenges. The approach to controlling energy and matter at nano- and subnanoscales is based on identifying the prevailing carriers and transfer mechanisms of the energy and matter at the spatial and temporal scales that are most relevant to any particular nanofabrication process. Strong accent is made on the competitive edge of the plasma-based nanotechnology in applications related to the major socio-economic issues (energy, food, water, health and environment) that are crucial for a sustainable development of humankind. Several important emerging topics, opportunities and multidisciplinary synergies for plasma nanoscience are highlighted. The main nanosafety issues are also discussed and the environment- and human health-friendly features of plasma-based nanotech are emphasized.
Resumo:
The routine cultivation of human corneal endothelial cells, with the view to treating patients with endothelial dysfunction, remains a challenging task. While progress in this field has been buoyed by the proposed existence of progenitor cells for the corneal endothelium at the corneal limbus, strategies for exploiting this concept remain unclear. In the course of evaluating methods for growing corneal endothelial cells, we have noted a case where remarkable growth was achieved using a serial explant culture technique. Over the course of 7 months, a single explant of corneal endothelium, acquired from cadaveric human tissue, was sequentially seeded into 7 culture plates and on each occasion produced a confluent cell monolayer. Sample cultures were confirmed as endothelial in origin by positive staining for glypican-4. On each occasion, small cells, closest to the tissue explant, developed into a highly compact layer with an almost homogenous structure. This layer was resistant to removal with trypsin and produced continuous cell outgrowth during multiple culture periods. The small cells gave rise to larger cells with phase-bright cell boundaries and prominent immunostaining for both nestin and telomerase. Nestin and telomerase were also strongly expressed in small cells immediately adjacent to the wound site, following transfer of the explant to another culture plate. These findings are consistent with the theory that progenitor cells for the corneal endothelium reside within the limbus and provide new insights into expected expression patterns for nestin and telomerase within the differentiation pathway.
Resumo:
The ongoing challenge for ED leaders is to remain abreast of system-wide changes that impact on the day-to-day management of their departments. Changes to the funding model creates another layer of complexity and this introductory paper serves as the beginning of a discussion about the way in which EDs are funded and how this can and will impact on business decisions, models of care and resource allocation within Australian EDs. Furthermore it is evident that any funding model today will mature and change with time, and moves are afoot to refine and contextualise ED funding over the medium term. This perspective seeks to provide a basis of understanding for our current and future funding arrangements in Australian EDs.
Resumo:
The world of Construction is changing, so too are the expectations of stakeholders regarding strategies for adapting existing resources (people, equipment and finances), processes and tools to the evolving needs of the industry. Building Information Modelling (BIM) is a data-rich, digital approach for representing building information required for design and construction. BIM tools play a crucial role and are instrumental to current approaches, by industry stakeholders, aimed at harnessing the power of a single information repository for improved project delivery and maintenance. Yet, building specifications - which document information on material quality, and workmanship requirements - remain distinctly separate from model information typically represented in BIM models. BIM adoption for building design, construction and maintenance is an industry-wide strategy aimed at addressing such concerns about information fragmentation. However, to effectively reduce inefficiencies due to fragmentation, BIM models require crucial building information contained in specifications. This paper profiles some specification tools which have been used in industry as a means of bridging the BIM-Specifications divide. We analyse the distinction between current attempts at integrating BIM and specifications and our approach which utilizes rich specification information embedded within objects in a product library as a method for improving the quality of information contained in BIM objects at various levels of model development.
Resumo:
The 3′ UTRs of eukaryotic genes participate in a variety of post-transcriptional (and some transcriptional) regulatory interactions. Some of these interactions are well characterised, but an undetermined number remain to be discovered. While some regulatory sequences in 3′ UTRs may be conserved over long evolutionary time scales, others may have only ephemeral functional significance as regulatory profiles respond to changing selective pressures. Here we propose a sensitive segmentation methodology for investigating patterns of composition and conservation in 3′ UTRs based on comparison of closely related species. We describe encodings of pairwise and three-way alignments integrating information about conservation, GC content and transition/transversion ratios and apply the method to three closely related Drosophila species: D. melanogaster, D. simulans and D. yakuba. Incorporating multiple data types greatly increased the number of segment classes identified compared to similar methods based on conservation or GC content alone. We propose that the number of segments and number of types of segment identified by the method can be used as proxies for functional complexity. Our main finding is that the number of segments and segment classes identified in 3′ UTRs is greater than in the same length of protein-coding sequence, suggesting greater functional complexity in 3′ UTRs. There is thus a need for sustained and extensive efforts by bioinformaticians to delineate functional elements in this important genomic fraction. C code, data and results are available upon request.
Resumo:
For Design Science Research (DSR) to gain wide credence as a research paradigm in Information Systems (IS), it must contribute to theory. “Theory cannot be improved until we improve the theorizing process, and we cannot improve the theorizing process until we describe it more explicitly, operate it more self-consciously, and decouple it from validation more deliberately” (Weick 1989, p. 516). With the aim of improved design science theorizing, we propose a DSR abstraction-layers framework that integrates, interlates, and harmonizes key methodological notions, primary of which are: 1) the Design Science (DS), Design Research (DR), and Routine Design (RD) distinction (Winter 2008); 2) Multi Grounding in IS Design Theory (ISDT) (Goldkuhl & Lind 2010); 3) the Idealized Model for Theory Development (IM4TD) (Fischer & Gregor 2011); and 4) the DSR Theorizing Framework (Lee et al. 2011). Though theorizing, or the abstraction process, has been the subject of healthy discussion in DSR, important questions remain. With most attention to date having focused on theorizing for Design Research (DR), a key stimulus of the layered view was the realization that Design Science (DS) produces abstract knowledge at a higher level of generality. The resultant framework includes four abstraction layers: (i) Design Research (DR) 1st Abstract Layer, (ii) Design Science (DS) 2nd Abstract Layer, (iii) DSR Incubation 3rd Layer, and (iv) Routine Design 4th Layer. Differentiating and inter-relating these layers will aid DSR researchers to discover, position, and amplify their DSR contributions. Additionally, consideration of the four layers can trigger creative perspectives that suggest unplanned outputs. The first abstraction layer, including its alternative patterns of activity, is well recognized in the literature. The other layers, however, are less well recognized; and the integrated representation of layers is novel.