Drosophila 3′ UTRs are more complex than protein-coding sequences


Autoria(s): Algama, Manjula; Oldmeadow, Christopher; Tasker, Edward; Mengersen, Kerrie; Keith, Jonathan M.
Data(s)

13/05/2014

Resumo

The 3′ UTRs of eukaryotic genes participate in a variety of post-transcriptional (and some transcriptional) regulatory interactions. Some of these interactions are well characterised, but an undetermined number remain to be discovered. While some regulatory sequences in 3′ UTRs may be conserved over long evolutionary time scales, others may have only ephemeral functional significance as regulatory profiles respond to changing selective pressures. Here we propose a sensitive segmentation methodology for investigating patterns of composition and conservation in 3′ UTRs based on comparison of closely related species. We describe encodings of pairwise and three-way alignments integrating information about conservation, GC content and transition/transversion ratios and apply the method to three closely related Drosophila species: D. melanogaster, D. simulans and D. yakuba. Incorporating multiple data types greatly increased the number of segment classes identified compared to similar methods based on conservation or GC content alone. We propose that the number of segments and number of types of segment identified by the method can be used as proxies for functional complexity. Our main finding is that the number of segments and segment classes identified in 3′ UTRs is greater than in the same length of protein-coding sequence, suggesting greater functional complexity in 3′ UTRs. There is thus a need for sustained and extensive efforts by bioinformaticians to delineate functional elements in this important genomic fraction. C code, data and results are available upon request.

Formato

application/pdf

Identificador

http://eprints.qut.edu.au/74301/

Publicador

Public Library of Science

Relação

http://eprints.qut.edu.au/74301/1/74301p.pdf

DOI:10.1371/journal.pone.0097336

Algama, Manjula, Oldmeadow, Christopher, Tasker, Edward, Mengersen, Kerrie, & Keith, Jonathan M. (2014) Drosophila 3′ UTRs are more complex than protein-coding sequences. PLoS ONE, 9(5), e97336.

http://purl.org/au-research/grants/ARC/DP0556631

http://purl.org/au-research/grants/ARC/DP0879308

http://purl.org/au-research/grants/ARC/DP1095849

http://purl.org/au-research/grants/NHMRC/389892

Direitos

Copyright 2014 Algama et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Fonte

School of Mathematical Sciences; Science & Engineering Faculty

Palavras-Chave #010000 MATHEMATICAL SCIENCES #060100 BIOCHEMISTRY AND CELL BIOLOGY #Drosophila #Genome evolution #Multiple alignment calculation #Sequence databases #Sequence motif analysis #Untranslated regions
Tipo

Journal Article