475 resultados para DRAGON (Computer system)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electromechanical wave propagation characterizes the first-swing dynamic response in a spatially delayed manner. This paper investigates the characteristics of this phenomenon in two-dimensional and one-dimensional power systems. In 2-D systems, the wave front expands as a ripple in a pond. In 1-D systems, the wave front is more concentrated, retains most of its magnitude, and travels like a pulse on a string. This large wave front is more impactful upon any weak link and easily causes transient instability in 1-D systems. The initial disturbance injects both high and low frequency components, but the lumped nature of realistic systems only permits the lower frequency components to propagate through. The kinetic energy split at a junction is equal to the generator inertia ratio in each branch in an idealized continuum system. This prediction is approximately valid in a realistic power system. These insights can enhance understanding and control of the traveling waves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper demonstrates the application of inverse filtering technique for power systems. In order to implement this method, the control objective should be based on a system variable that needs to be set on a specific value for each sampling time. A control input is calculated to generate the desired output of the plant and the relationship between the two is used design an auto-regressive model. The auto-regressive model is converted to a moving average model to calculate the control input based on the future values of the desired output. Therefore, required future values to construct the output are predicted to generate the appropriate control input for the next sampling time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is an increased interest on the use of Unmanned Aerial Vehicles (UAVs) for wildlife and feral animal monitoring around the world. This paper describes a novel system which uses a predictive dynamic application that places the UAV ahead of a user, with a low cost thermal camera, a small onboard computer that identifies heat signatures of a target animal from a predetermined altitude and transmits that target’s GPS coordinates. A map is generated and various data sets and graphs are displayed using a GUI designed for easy use. The paper describes the hardware and software architecture and the probabilistic model for downward facing camera for the detection of an animal. Behavioral dynamics of target movement for the design of a Kalman filter and Markov model based prediction algorithm are used to place the UAV ahead of the user. Geometrical concepts and Haversine formula are applied to the maximum likelihood case in order to make a prediction regarding a future state of the user, thus delivering a new way point for autonomous navigation. Results show that the system is capable of autonomously locating animals from a predetermined height and generate a map showing the location of the animals ahead of the user.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is an increased interest in the use of Unmanned Aerial Vehicles for load transportation from environmental remote sensing to construction and parcel delivery. One of the main challenges is accurate control of the load position and trajectory. This paper presents an assessment of real flight trials for the control of an autonomous multi-rotor with a suspended slung load using only visual feedback to determine the load position. This method uses an onboard camera to take advantage of a common visual marker detection algorithm to robustly detect the load location. The load position is calculated using an onboard processor, and transmitted over a wireless network to a ground station integrating MATLAB/SIMULINK and Robotic Operating System (ROS) and a Model Predictive Controller (MPC) to control both the load and the UAV. To evaluate the system performance, the position of the load determined by the visual detection system in real flight is compared with data received by a motion tracking system. The multi-rotor position tracking performance is also analyzed by conducting flight trials using perfect load position data and data obtained only from the visual system. Results show very accurate estimation of the load position (~5% Offset) using only the visual system and demonstrate that the need for an external motion tracking system is not needed for this task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reputation systems are employed to measure the quality of items on the Web. Incorporating accurate reputation scores in recommender systems is useful to provide more accurate recommendations as recommenders are agnostic to reputation. The ratings aggregation process is a vital component of a reputation system. Reputation models available do not consider statistical data in the rating aggregation process. This limitation can reduce the accuracy of generated reputation scores. In this paper, we propose a new reputation model that considers previously ignored statistical data. We compare our proposed model against state-of the-art models using top-N recommender system experiment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tangible physical systems are more intuitive than Intangible virtual Systems. Mixed reality systems are considered as an alternative to virtual systems, bringing advantages of tangible systems into an interaction. However, past research has mainly focussed on technical aspects of incorporating pervasive-ness and immersive-ness in the virtual systems. This paper reports on an empirical study of intuitive Interaction in a Mixed Reality game system for children and the design aspects that could facilitate intuitive Interaction in such systems. A related samples Friedman’s test showed that the Mixed Reality game system demonstrated more intuitive interactions than non-intuitive Interactions. A linear regression analysis further established that the variation in intuitive Interaction in the Mixed Reality system could be statistically significantly explained primarily by physical affordances offered by the Mixed Reality system and to a lesser extent by the perceived affordances in the system. Design guidelines to develop intuitive Mixed Reality systems are discussed. These guidelines should allow designers to exploit the wonders of advances in technology and at the same time allow users to directly interact with the physical real world. This will allow users to access maximal physical affordances, which are primary contributors to intuitive interaction in Tangible and Mixed Reality systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the development of wearable and mobile computing technology, more and more people start using sleep-tracking tools to collect personal sleep data on a daily basis aiming at understanding and improving their sleep. While sleep quality is influenced by many factors in a person’s lifestyle context, such as exercise, diet and steps walked, existing tools simply visualize sleep data per se on a dashboard rather than analyse those data in combination with contextual factors. Hence many people find it difficult to make sense of their sleep data. In this paper, we present a cloud-based intelligent computing system named SleepExplorer that incorporates sleep domain knowledge and association rule mining for automated analysis on personal sleep data in light of contextual factors. Experiments show that the same contextual factors can play a distinct role in sleep of different people, and SleepExplorer could help users discover factors that are most relevant to their personal sleep.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report summarises the development of an Unmanned Aerial System and an integrated Wireless Sensor Network (WSN), suitable for the real world application in remote sensing tasks. Several aspects are discussed and analysed to provide improvements in flight duration, performance and mobility of the UAV, while ensuring the accuracy and range of data from the wireless sensor system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Network Interfaces (NIs) are used in Multiprocessor System-on-Chips (MPSoCs) to connect CPUs to a packet switched Network-on-Chip. In this work we introduce a new NI architecture for our hierarchical CoreVA-MPSoC. The CoreVA-MPSoC targets streaming applications in embedded systems. The main contribution of this paper is a system-level analysis of different NI configurations, considering both software and hardware costs for NoC communication. Different configurations of the NI are compared using a benchmark suite of 10 streaming applications. The best performing NI configuration shows an average speedup of 20 for a CoreVA-MPSoC with 32 CPUs compared to a single CPU. Furthermore, we present physical implementation results using a 28 nm FD-SOI standard cell technology. A hierarchical MPSoC with 8 CPU clusters and 4 CPUs in each cluster running at 800MHz requires an area of 4.56mm2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers the dynamic modelling and motion control of a Surface Effect Ship (SES) for safer transfer of personnel and equipment from vessel to-and-from an offshore wind-turbine. The control system designed is referred to as Boarding Control System (BCS). The performance of this system is investigated for a specific wind-farm service vessel—The Wave Craft. On a SES, the pressurized air cushion supports the majority of the weight of the vessel. The control problem considered relates to the actuation of the pressure such that wave-induced vessel motions are minimized. Results are given through simulation, model- and full-scale experimental testing.