720 resultados para Accounting information
Resumo:
Abstract: How has human information behavior evolved? Our paper explores this question in the form of notions, models and theories about the relationship between information behavior and human evolution. Alexander’s Ecological Dominance and Social Competition/Cooperation (EDSC) model currently provides the most comprehensive overview of human traits in the development of a theory of human evolution and sociality. His model provides a basis for explaining the evolution of human socio-cognitive abilities, including ecological dominance, and social competition/cooperation. Our paper examines the human trait of information behavior as a socio-cognitive ability related to ecological dominance, and social competition/cooperation. The paper first outlines what is meant by information behavior from various interdisciplinary perspectives. We propose that information behavior is a socio-cognitive ability that is related to and enables other sociocognitive abilities such as human ecological dominance, and social competition/cooperation. The paper reviews the current state of evolutionary approaches to information behavior and future directions for this research . Keywords: information behavior, socio-cognitive ability, ecological dominance, social competition, social cooperation.
Resumo:
Information behavior studies are a growing body of research that highlights the importance of information for everyone in the information age. This e-book presents an international and diverse range of studies and insights into the current state of theories and models of information behavior. There is an emphasis on the socialpersonalhuman dimensions of information seeking using social science methods and theoretical frameworks. The studies particularly draw on the methods and theories of anthropology, sociology and psychology to produce interpretations of the way in which information is experienced in the lives of individuals working as critical care nurses in a medical environment, the information seeking behavior of the visually impaired, the social interactions within knitting circles in public libraries, and attempts to apply information behavior theory to the design of information solutions. Collectively the papers contribute more generally to our understanding of information behavior theory and models, including the medical and retrieval contexts.
Resumo:
Purpose – Interactive information retrieval (IR) involves many human cognitive shifts at different information behaviour levels. Cognitive science defines a cognitive shift or shift in cognitive focus as triggered by the brain's response and change due to some external force. This paper aims to provide an explication of the concept of “cognitive shift” and then report results from a study replicating Spink's study of cognitive shifts during interactive IR. This work aims to generate promising insights into aspects of cognitive shifts during interactive IR and a new IR evaluation measure – information problem shift. Design/methodology/approach – The study participants (n=9) conducted an online search on an in-depth personal medical information problem. Data analysed included the pre- and post-search questionnaires completed by each study participant. Implications for web services and further research are discussed. Findings – Key findings replicated the results in Spink's study, including: all study participants reported some level of cognitive shift in their information problem, information seeking and personal knowledge due to their search interaction; and different study participants reported different levels of cognitive shift. Some study participants reported major cognitive shifts in various user-based variables such as information problem or information-seeking stage. Unlike Spink's study, no participant experienced a negative shift in their information problem stage or level of information problem understanding. Originality/value – This study builds on the previous study by Spink using a different dataset. The paper provides valuable insights for further research into cognitive shifts during interactive IR.
Resumo:
There is scant literature about the role of the lawyer in influencing the likelihood of a charitable bequest being made in a will. Charities regularly advertise in legal journals and supply bequest materials to lawyers, but the effectiveness of these strategies for influencing lawyers appears not to have been measured in the literature or in practice. Our exploratory research indicates that specialist estate lawyers report that they pay little or no attention to traditional marketing of charitable bequests to them and that lawyers’ specific information needs from charities about bequests are not being satisfied appropriately. Our study reveals that lawyers do seek information from charities in order to write a will’s bequest clause, once a bequest has been considered by the client. Lawyers indicated frustration with obtaining this information from charities, and we recommend some actions for charities to rectify this situation. Recommendations for enhanced bequest solicitation are made together with suggestions for pathways for future bequest research involving lawyers.
Resumo:
A new relationship type of social networks - online dating - are gaining popularity. With a large member base, users of a dating network are overloaded with choices about their ideal partners. Recommendation methods can be utilized to overcome this problem. However, traditional recommendation methods do not work effectively for online dating networks where the dataset is sparse and large, and a two-way matching is required. This paper applies social networking concepts to solve the problem of developing a recommendation method for online dating networks. We propose a method by using clustering, SimRank and adapted SimRank algorithms to recommend matching candidates. Empirical results show that the proposed method can achieve nearly double the performance of the traditional collaborative filtering and common neighbor methods of recommendation.
Resumo:
Unstructured text data, such as emails, blogs, contracts, academic publications, organizational documents, transcribed interviews, and even tweets, are important sources of data in Information Systems research. Various forms of qualitative analysis of the content of these data exist and have revealed important insights. Yet, to date, these analyses have been hampered by limitations of human coding of large data sets, and by bias due to human interpretation. In this paper, we compare and combine two quantitative analysis techniques to demonstrate the capabilities of computational analysis for content analysis of unstructured text. Specifically, we seek to demonstrate how two quantitative analytic methods, viz., Latent Semantic Analysis and data mining, can aid researchers in revealing core content topic areas in large (or small) data sets, and in visualizing how these concepts evolve, migrate, converge or diverge over time. We exemplify the complementary application of these techniques through an examination of a 25-year sample of abstracts from selected journals in Information Systems, Management, and Accounting disciplines. Through this work, we explore the capabilities of two computational techniques, and show how these techniques can be used to gather insights from a large corpus of unstructured text.
Resumo:
Recent surveys of information technology management professionals show that understanding business domains in terms of business productivity and cost reduction potential, knowledge of different vertical industry segments and their information requirements, understanding of business processes and client-facing skills are more critical for Information Systems personnel than ever before. In an attempt to restrucuture the information systems curriculum accordingly, our view it that information systems students need to develop an appreciation for organizational work systems in order to understand the operation and significance of information systems within such work systems.
Resumo:
DeLone and McLean (1992, p. 16) argue that the concept of “system use” has suffered from a “too simplistic definition.” Despite decades of substantial research on system use, the concept is yet to receive strong theoretical scrutiny. Many measures of system use and the development of measures have been often idiosyncratic and lack credibility or comparability. This paper reviews various attempts at conceptualization and measurement of system use and then proposes a re-conceptualization of it as “the level of incorporation of an information system within a user’s processes.” The definition is supported with the theory of work systems, system, and Key-User-Group considerations. We then go on to develop the concept of a Functional- Interface-Point (FIP) and four dimensions of system usage: extent, the proportion of the FIPs used by the business process; frequency, the rate at which FIPs are used by the participants in the process; thoroughness, the level of use of information/functionality provided by the system at an FIP; and attitude towards use, a set of measures that assess the level of comfort, degree of respect and the challenges set forth by the system. The paper argues that the automation level, the proportion of the business process encoded by the information system has a mediating impact on system use. The article concludes with a discussion of some implications of this re-conceptualization and areas for follow on research.
Resumo:
Despite promising benefits and advantages, there are reports of failures and low realisation of benefits in Enterprise System (ES) initiatives. Among the research on the factors that influence ES success, there is a dearth of studies on the knowledge implications of multiple end-user groups using the same ES application. An ES facilitates the work of several user groups, ranging from strategic management, management, to operational staff, all using the same system for multiple objectives. Given the fundamental characteristics of ES – integration of modules, business process views, and aspects of information transparency – it is necessary that all frequent end-users share a reasonable amount of common knowledge and integrate their knowledge to yield new knowledge. Recent literature on ES implementation highlights the importance of Knowledge Integration (KI) for implementation success. Unfortunately, the importance of KI is often overlooked and little about the role of KI in ES success is known. Many organisations do not achieve the potential benefits from their ES investment because they do not consider the need or their ability to integrate their employees’ knowledge. This study is designed to improve our understanding of the influence of KI among ES end-users on operational ES success. The three objectives of the study are: (I) to identify and validate the antecedents of KI effectiveness, (II) to investigate the impact of KI effectiveness on the goodness of individuals’ ES-knowledge base, and (III) to examine the impact of the goodness of individuals’ ES-knowledge base on the operational ES success. For this purpose, we employ the KI factors identified by Grant (1996) and an IS-impact measurement model from the work of Gable et al. (2008) to examine ES success. The study derives its findings from data gathered from six Malaysian companies in order to obtain the three-fold goal of this thesis as outlined above. The relationships between the antecedents of KI effectiveness and its consequences are tested using 188 responses to a survey representing the views of management and operational employment cohorts. Using statistical methods, we confirm three antecedents of KI effectiveness and the consequences of the antecedents on ES success are validated. The findings demonstrate a statistically positive impact of KI effectiveness of ES success, with KI effectiveness contributing to almost one-third of ES success. This research makes a number of contributions to the understanding of the influence of KI on ES success. First, based on the empirical work using a complete nomological net model, the role of KI effectiveness on ES success is evidenced. Second, the model provides a theoretical lens for a more comprehensive understanding of the impact of KI on the level of ES success. Third, restructuring the dimensions of the knowledge-based theory to fit the context of ES extends its applicability and generalisability to contemporary Information Systems. Fourth, the study develops and validates measures for the antecedents of KI effectiveness. Fifth, the study demonstrates the statistically significant positive influence of the goodness of KI on ES success. From a practical viewpoint, this study emphasises the importance of KI effectiveness as a direct antecedent of ES success. Practical lessons can be drawn from the work done in this study to empirically identify the critical factors among the antecedents of KI effectiveness that should be given attention.
Resumo:
Although in the late 1990s there was much discussion as to whether the idea of information literacy was necessary or had longevity, global interest in the phenomenon has increased rather than diminished. In the midst of all this activity, what has happened to the way in which we interpret the idea of information literacy in the last decade or more? The label of information literacy has certainly become widely applied, especially to library based programs and remains more popular in formal learning environments.Ultimately information literacy is about peoples’ experience of using information wherever they happen to be. Information literacy is about people interacting, engaging, working with information in many contexts, either individually or in community. Emerging technologies may transform the kinds of information available and how it is engaged with. Nevertheless, we continue to need to understand the experience of information use in order to support people in their information environments. We continue to need to develop programs which reflect and enhance peoples’ experiences of using information to learn in ever widening and more complex settings (Bruce, 2008; Bruce & Hughes, 2010).
Resumo:
In topological mapping, perceptual aliasing can cause different places to appear indistinguishable to the robot. In case of severely corrupted or non-available odometry information, topological mapping is difficult as the robot is challenged with the loop-closing problem; that is to determine whether it has visited a particular place before. In this article we propose to use neighbourhood information to disambiguate otherwise indistinguishable places. Using neighbourhood information for place disambiguation is an approach that neither depends on a specific choice of sensors nor requires geometric information such as odometry. Local neighbourhood information is extracted from a sequence of observations of visited places. In experiments using either sonar or visual observations from an indoor environment the benefits of using neighbourhood clues for the disambiguation of otherwise identical vertices are demonstrated. Over 90% of the maps we obtain are isomorphic with the ground truth. The choice of the robot’s sensors does not impact the results of the experiments much.
Resumo:
Collaborative question answering (cQA) portals such as Yahoo! Answers allow users as askers or answer authors to communicate, and exchange information through the asking and answering of questions in the network. In their current set-up, answers to a question are arranged in chronological order. For effective information retrieval, it will be advantageous to have the users’ answers ranked according to their quality. This paper proposes a novel approach of evaluating and ranking the users’answers and recommending the top-n quality answers to information seekers. The proposed approach is based on a user-reputation method which assigns a score to an answer reflecting its answer author’s reputation level in the network. The proposed approach is evaluated on a dataset collected from a live cQA, namely, Yahoo! Answers. To compare the results obtained by the non-content-based user-reputation method, experiments were also conducted with several content-based methods that assign a score to an answer reflecting its content quality. Various combinations of non-content and content-based scores were also used in comparing results. Empirical analysis shows that the proposed method is able to rank the users’ answers and recommend the top-n answers with good accuracy. Results of the proposed method outperform the content-based methods, various combinations, and the results obtained by the popular link analysis method, HITS.
Resumo:
Mixture models are a flexible tool for unsupervised clustering that have found popularity in a vast array of research areas. In studies of medicine, the use of mixtures holds the potential to greatly enhance our understanding of patient responses through the identification of clinically meaningful clusters that, given the complexity of many data sources, may otherwise by intangible. Furthermore, when developed in the Bayesian framework, mixture models provide a natural means for capturing and propagating uncertainty in different aspects of a clustering solution, arguably resulting in richer analyses of the population under study. This thesis aims to investigate the use of Bayesian mixture models in analysing varied and detailed sources of patient information collected in the study of complex disease. The first aim of this thesis is to showcase the flexibility of mixture models in modelling markedly different types of data. In particular, we examine three common variants on the mixture model, namely, finite mixtures, Dirichlet Process mixtures and hidden Markov models. Beyond the development and application of these models to different sources of data, this thesis also focuses on modelling different aspects relating to uncertainty in clustering. Examples of clustering uncertainty considered are uncertainty in a patient’s true cluster membership and accounting for uncertainty in the true number of clusters present. Finally, this thesis aims to address and propose solutions to the task of comparing clustering solutions, whether this be comparing patients or observations assigned to different subgroups or comparing clustering solutions over multiple datasets. To address these aims, we consider a case study in Parkinson’s disease (PD), a complex and commonly diagnosed neurodegenerative disorder. In particular, two commonly collected sources of patient information are considered. The first source of data are on symptoms associated with PD, recorded using the Unified Parkinson’s Disease Rating Scale (UPDRS) and constitutes the first half of this thesis. The second half of this thesis is dedicated to the analysis of microelectrode recordings collected during Deep Brain Stimulation (DBS), a popular palliative treatment for advanced PD. Analysis of this second source of data centers on the problems of unsupervised detection and sorting of action potentials or "spikes" in recordings of multiple cell activity, providing valuable information on real time neural activity in the brain.
Resumo:
The paper explores the results an on-going research project to identify factors influencing the success of international and non-English speaking background (NESB) gradúate students in the fields of Engineering and IT at three Australian universities: the Queensland University of Technology (QUT), the University of Western Australia (UWA), and Curtin University (CU). While the larger study explores the influence of factors from both sides of the supervision equation (e.g., students and supervisors), this paper focusses primarily on the results of an online survey involving 227 international and/or NESB graduate students in the areas of Engineering and IT at the three universities. The study reveals cross-cultural differences in perceptions of student and supervisor roles, as well as differences in the understanding of the requirements of graduate study within the Australian Higher Education context. We argue that in order to assist international and NESB research students to overcome such culturally embedded challenges, it is important to develop a model which recognizes the complex interactions of factors from both sides of the supervision relationship, in order to understand this cohort‟s unique pedagogical needs and develop intercultural sensitivity within postgraduate research supervision.