566 resultados para Modeling Geomorphological Processes
Resumo:
To better understand how freshwater ecosystems respond to changes in catchment land-use, it is important to develop measures of ecological health that include aspects of both ecosystem structure and function. This study investigated measures of nutrient processes as potential indicators of stream ecosystem health across a land-use gradient from relatively undisturbed to highly modified. A total of seven indicators (potential denitrification; an index of denitrification potential relative to sediment organic matter; benthic algal growth on artificial substrates amended with (a) N only, (b) P only, and (c) N and P; and δ15N of aquatic plants and benthic sediment) were measured at 53 streams in southeast Queensland, Australia. The indicators were evaluated by their response to a defined gradient of agricultural land-use disturbance as well as practical aspects of using the indicators as part of a monitoring program. Regression models based on descriptors of the disturbance gradient explained a large proportion of the variation in six of the seven indicators. Denitrification index, algal growth in N amended substrate, and δ15N of aquatic plants demonstrated the best regression. However, the δ15N value of benthic sediment was found to be the best indicator overall for incorporation into a monitoring program, as samples were relatively easy to collect and process, and were successfully collected at more than 90% of the study sites.
Resumo:
There is a wide variety of drivers for business process modelling initiatives, reaching from business evolution and process optimisation over compliance checking and process certification to process enactment. That, in turn, results in models that differ in content due to serving different purposes. In particular, processes are modelled on different abstraction levels and assume different perspectives. Vertical alignment of process models aims at handling these deviations. While the advantages of such an alignment for inter-model analysis and change propagation are out of question, a number of challenges has still to be addressed. In this paper, we discuss three main challenges for vertical alignment in detail. Against this background, the potential application of techniques from the field of process integration is critically assessed. Based thereon, we identify specific research questions that guide the design of a framework for model alignment.
Resumo:
Regional and remote communities in tropical Queensland are among Australia’s most vulnerable in the face of climate change. At the same time, these socially and economically vulnerable regions house some of Australia’s most significant biodiversity values. Past approaches to terrestrial biodiversity management have focused on tackling biophysical interventions through the use of biophysical knowledge. An equally important focus should be placed on building regional-scale community resilience if some of the worst biodiversity impacts of climate change are to be avoided or mitigated. Despite its critical need, more systemic or holistic approaches to natural resource management have been rarely trialed and tested in a structured way. Currently, most strategic interventions in improving regional community resilience are ad hoc, not theory-based and short term. Past planning approaches have not been durable, nor have they been well informed by clear indicators. Research into indicators for community resilience has been poorly integrated within adaptive planning and management cycles. This project has aimed to resolve this problem by: * Reviewing the community and social resilience and adaptive planning literature to reconceptualise an improved framework for applying community resilience concepts; * Harvesting and extending work undertaken in MTSRF Phase 1 to identifying the learnings emerging from past MTSRF research; * Distilling these findings to identify new theoretical and practical approaches to the application of community resilience in natural resource use and management; * Reconsidering the potential interplay between a region’s biophysical and social planning processes, with a focus on exploring spatial tools to communicate climate change risk and its consequent environmental, economic and social impacts, and; * Trialling new approaches to indicator development and adaptive planning to improve community resilience, using a sub-regional pilot in the Wet Tropics. In doing so, we also looked at ways to improve the use and application of relevant spatial information. Our theoretical review drew upon the community development, psychology and emergency management literature to better frame the concept of community resilience relative to aligned concepts of social resilience, vulnerability and adaptive capacity. Firstly, we consider community resilience as a concept that can be considered at a range of scales (e.g. regional, locality, communities of interest, etc.). We also consider that overall resilience at higher scales will be influenced by resilience levels at lesser scales (inclusive of the resilience of constituent institutions, families and individuals). We illustrate that, at any scale, resilience and vulnerability are not necessarily polar opposites, and that some understanding of vulnerability is important in determining resilience. We position social resilience (a concept focused on the social characteristics of communities and individuals) as an important attribute of community resilience, but one that needs to be considered alongside economic, natural resource, capacity-based and governance attributes. The findings from the review of theory and MTSRF Phase 1 projects were synthesized and refined by the wider project team. Five predominant themes were distilled from this literature, research review and an expert analysis. They include the findings that: 1. Indicators have most value within an integrated and adaptive planning context, requiring an active co-research relationship between community resilience planners, managers and researchers if real change is to be secured; 2. Indicators of community resilience form the basis for planning for social assets and the resilience of social assets is directly related the longer term resilience of natural assets. This encourages and indeed requires the explicit development and integration of social planning within a broader natural resource planning and management framework; 3. Past indicator research and application has not provided a broad picture of the key attributes of community resilience and there have been many attempts to elicit lists of “perfect” indicators that may never be useful within the time and resource limitations of real world regional planning and management. We consider that modeling resilience for proactive planning and prediction purposes requires the consideration of simple but integrated clusters of attributes; 4. Depending on time and resources available for planning and management, the combined use of well suited indicators and/or other lesser “lines of evidence” is more flexible than the pursuit of perfect indicators, and that; 5. Index-based, collaborative and participatory approaches need to be applied to the development, refinement and reporting of indicators over longer time frames. We trialed the practical application of these concepts via the establishment of a collaborative regional alliance of planners and managers involved in the development of climate change adaptation strategies across tropical Queensland (the Gulf, Wet Tropics, Cape York and Torres Strait sub-regions). A focus on the Wet Tropics as a pilot sub-region enabled other Far North Queensland sub-region’s to participate and explore the potential extension of this approach. The pilot activities included: * Further exploring ways to innovatively communicate the region’s likely climate change scenarios and possible environmental, economic and social impacts. We particularly looked at using spatial tools to overlay climate change risks to geographic communities and social vulnerabilities within those communities; * Developing a cohesive first pass of a State of the Region-style approach to reporting community resilience, inclusive of regional economic viability, community vitality, capacitybased and governance attributes. This framework integrated a literature review, expert (academic and community) and alliance-based contributions; and * Early consideration of critical strategies that need to be included in unfolding regional planning activities with Far North Queensland. The pilot assessment finds that rural, indigenous and some urban populations in the Wet Tropics are highly vulnerable and sensitive to climate change and may require substantial support to adapt and become more resilient. This assessment finds that under current conditions (i.e. if significant adaptation actions are not taken) the Wet Tropics as a whole may be seriously impacted by the most significant features of climate change and extreme climatic events. Without early and substantive action, this could result in declining social and economic wellbeing and natural resource health. Of the four attributes we consider important to understanding community resilience, the Wet Tropics region is particularly vulnerable in two areas; specifically its economic vitality and knowledge, aspirations and capacity. The third and fourth attributes, community vitality and institutional governance are relatively resilient but are vulnerable in some key respects. In regard to all four of these attributes, however, there is some emerging capacity to manage the possible shocks that may be associated with the impacts of climate change and extreme climatic events. This capacity needs to be carefully fostered and further developed to achieve broader community resilience outcomes. There is an immediate need to build individual, household, community and sectoral resilience across all four attribute groups to enable populations and communities in the Wet Tropics region to adapt in the face of climate change. Preliminary strategies of importance to improve regional community resilience have been identified. These emerging strategies also have been integrated into the emerging Regional Development Australia Roadmap, and this will ensure that effective implementation will be progressed and coordinated. They will also inform emerging strategy development to secure implementation of the FNQ 2031 Regional Plan. Of most significance in our view, this project has taken a co-research approach from the outset with explicit and direct importance and influence within the region’s formal planning and management arrangements. As such, the research: * Now forms the foundations of the first attempt at “Social Asset” planning within the Wet Tropics Regional NRM Plan review; * Is assisting Local government at regional scale to consider aspects of climate change adaptation in emerging planning scheme/community planning processes; * Has partnered the State government (via the Department of Infrastructure and Planning and Regional Managers Coordination Network Chair) in progressing the Climate Change adaptation agenda set down within the FNQ 2031 Regional Plan; * Is informing new approaches to report on community resilience within the GBRMPA Outlook reporting framework; and * Now forms the foundation for the region’s wider climate change adaptation priorities in the Regional Roadmap developed by Regional Development Australia. Through the auspices of Regional Development Australia, the outcomes of the research will now inform emerging negotiations concerning a wider package of climate change adaptation priorities with State and Federal governments. Next stage research priorities are also being developed to enable an ongoing alliance between researchers and the region’s climate change response.
Resumo:
Globalization, financial deregulation, economic turmoil, and technology breakthroughs are profoundly exposing organizations to business networks. Engaging these networks requires explicit planning from the strategic level down to the operational level of an organization, which significantly affects organizational artefacts such as business services, processes, and resources. Although enterprise architecture (EA) aligns business and IT aspects of organizational systems, previous applications of EA have not comprehensively addressed a methodological framework for planning. In the context of business networks, this study seeks to explore the application of EA for business network planning where it builds upon relevant and well-established prescriptive and descriptive aspects of EA. Prescriptive aspects include integrated models of services, business processes, and resources among other organizational artefacts, at both business and IT levels. Descriptive aspects include ontological classifications of business functionality, which allow EA models to be aligned semantically to organizational artefacts and, ultimately higher-level business strategy. A prominent approach for capturing descriptive aspects of EA is business capability modelling. In order to explore and develop the illustrative extensions of EA through capability modelling, a list of requirements (capability dimensions) for business network planning will be identified and validated through a revelatory case study encompassing different business network manifestations, or situations. These include virtual organization, liquid workforce, business network orchestration, and headquarters-subsidiary. The use of artefacts, conventionally, modelled through EA will be considered in these network situations. Two general considerations for EA extensions are explored for the identified requirements at the level of the network: extension of artefacts through the network and alignment of network level artefacts with individual organization artefacts. The list of requirements provides the basis for a constructivist extension of EA in the following ways. Firstly, for descriptive aspects, it offers constructivist insights to guide extensions for particular EA techniques and concepts. Secondly, for prescriptive aspects it defines a set of capability dimensions, which improve the analysis and assessment of organization capabilities for business network situations.
Resumo:
Introduction The importance of in vitro biomechanical testing in today’s understanding of spinal pathology and treatment modalities cannot be stressed enough. Different studies have used differing levels of dissection of their spinal segments for their testing protocols[1, 2]. The aim of this study was to assess the impact of removing the costovertebral joints and partial resection of the spinous process sequentially, on the stiffness of the immature thoracic bovine spinal segment. Materials and Methods Thoracic spines from 6-8 week old calves were used. Each spine was dissected and divided into motion segments with 5cm of attached rib on each side and full spinous processes including levels T4-T11 (n=28). They were potted in polymethylemethacrylate. An Instron Biaxial materials testing machine with a custom made jig was used for testing. The segments were tested in flexion/extension, lateral bending and axial rotation at 37⁰C and 100% humidity, using moment control to a maximum 1.75 Nm with a loading rate of 0.3 Nm per second. They were first tested intact for ten load cycles with data collected from the tenth cycle. Progressive dissection was performed by removing first the attached ribs, followed by the spinous process at its base. Biomechanical testing was carried out after each level of dissection using the same protocol. Statistical analysis of the data was performed using repeated measures ANOVA. Results In combined flexion/extension there was a significant reduction in stiffness of 16% (p=0.002). This was mainly after resection of the ribs (14%, p=0.024) and mainly occurred in flexion where stiffness reduced by 22% (p=0.021). In extension, stiffness dropped by 13% (p=0.133). However there was no further significant change in stiffness on resection of the spinous process (<1%) (p=1.00). In lateral bending there was a significant decrease in stiffness of 13% (p<0.001). This comprised a drop of 11% on resection of the ribs (p=0.009) and a further 8% on resection of the spinous process (p=0.014). There was no difference between left and right bending. In axial rotation there was no significant change in stiffness after each stage of dissection (p=0.253). There was no difference between left and right rotation. Conclusion The costovertebral joints play a significant role in providing stability to the bovine thoracic spine in both flexion/extension and lateral bending, whereas the spinous processes play a minor role. Both elements have little effect on axial rotation stability.
Resumo:
Graphene and carbon nanotubes are the most promising nanomaterials for application in various modern nanodevices. The successful production of the nanotubes and graphene in a single process was achieved by using a magnetically enhanced arc discharge in helium atmosphere between carbon and metal electrodes. A 3-D fluid model has been used to investigate the discharge parameters.
Resumo:
Plasma sheath, nanostructure growth, and thermal models are used to describe carbon nanofiber (CNF) growth and heating in a low-temperature plasma. It is found that when the H2 partial pressure is increased, H atom recombination and H ion neutralization are the main mechanisms responsible for energy release on the catalyst surface. Numerical results also show that process parameters such as the substrate potential, electron temperature and number density mainly affect the CNF growth rate and plasma heating at low catalyst temperatures. In contrast, gas pressure, ion temperature, and the C2H2:H2 supply ratio affect the CNF growth at all temperatures. It is shown that plasma-related processes substantially increase the catalyst particle temperature, in comparison to the substrate and the substrate-holding platform temperatures.
Resumo:
The quick detection of an abrupt unknown change in the conditional distribution of a dependent stochastic process has numerous applications. In this paper, we pose a minimax robust quickest change detection problem for cases where there is uncertainty about the post-change conditional distribution. Our minimax robust formulation is based on the popular Lorden criteria of optimal quickest change detection. Under a condition on the set of possible post-change distributions, we show that the widely known cumulative sum (CUSUM) rule is asymptotically minimax robust under our Lorden minimax robust formulation as a false alarm constraint becomes more strict. We also establish general asymptotic bounds on the detection delay of misspecified CUSUM rules (i.e. CUSUM rules that are designed with post- change distributions that differ from those of the observed sequence). We exploit these bounds to compare the delay performance of asymptotically minimax robust, asymptotically optimal, and other misspecified CUSUM rules. In simulation examples, we illustrate that asymptotically minimax robust CUSUM rules can provide better detection delay performance at greatly reduced computation effort compared to competing generalised likelihood ratio procedures.
Resumo:
Cancer is a disease of signal transduction in which the dysregulation of the network of intracellular and extracellular signaling cascades is sufficient to thwart the cells finely-tuned biochemical control mechanisms. A keen interest in the mathematical modeling of cell signaling networks and the regulation of signal transduction has emerged in recent years, and has produced a glimmer of insight into the sophisticated feedback control and network regulation operating within cells. In this review, we present an overview of published theoretical studies on the control aspects of signal transduction, emphasizing the role and importance of mechanisms such as ‘ultrasensitivity’ and feedback loops. We emphasize that these exquisite and often subtle control strategies represent the key to orchestrating ‘simple’ signaling behaviors within the complex intracellular network, while regulating the trade-off between sensitivity and robustness to internal and external perturbations. Through a consideration of these apparent paradoxes, we explore how the basic homeostasis of the intracellular signaling network, in the face of carcinogenesis, can lead to neoplastic progression rather than cell death. A simple mathematical model is presented, furnishing a vivid illustration of how ‘control-oriented’ models of the deranged signaling networks in cancer cells may enucleate improved treatment strategies, including patient-tailored combination therapies, with the potential for reduced toxicity and more robust and potent antitumor activity.
Resumo:
In this paper, a novel data-driven approach to monitoring of systems operating under variable operating conditions is described. The method is based on characterizing the degradation process via a set of operation-specific hidden Markov models (HMMs), whose hidden states represent the unobservable degradation states of the monitored system while its observable symbols represent the sensor readings. Using the HMM framework, modeling, identification and monitoring methods are detailed that allow one to identify a HMM of degradation for each operation from mixed-operation data and perform operation-specific monitoring of the system. Using a large data set provided by a major manufacturer, the new methods are applied to a semiconductor manufacturing process running multiple operations in a production environment.
Resumo:
To identify and categorize complex stimuli such as familiar objects or speech, the human brain integrates information that is abstracted at multiple levels from its sensory inputs. Using cross-modal priming for spoken words and sounds, this functional magnetic resonance imaging study identified 3 distinct classes of visuoauditory incongruency effects: visuoauditory incongruency effects were selective for 1) spoken words in the left superior temporal sulcus (STS), 2) environmental sounds in the left angular gyrus (AG), and 3) both words and sounds in the lateral and medial prefrontal cortices (IFS/mPFC). From a cognitive perspective, these incongruency effects suggest that prior visual information influences the neural processes underlying speech and sound recognition at multiple levels, with the STS being involved in phonological, AG in semantic, and mPFC/IFS in higher conceptual processing. In terms of neural mechanisms, effective connectivity analyses (dynamic causal modeling) suggest that these incongruency effects may emerge via greater bottom-up effects from early auditory regions to intermediate multisensory integration areas (i.e., STS and AG). This is consistent with a predictive coding perspective on hierarchical Bayesian inference in the cortex where the domain of the prediction error (phonological vs. semantic) determines its regional expression (middle temporal gyrus/STS vs. AG/intraparietal sulcus).
Resumo:
Molecular interactions that underlie pathophysiological states are being elucidated using techniques that profile proteomicend points in cellular systems. Within the field of cancer research, protein interaction networks play pivotal roles in the establishment and maintenance of the hallmarks of malignancy, including cell division, invasion, and migration. Multiple complementary tools enable a multifaceted view of how signal protein pathway alterations contribute to pathophysiological states.One pivotal technique is signal pathway profiling of patient tissue specimens. This microanalysis technology provides a proteomic snapshot at one point in time of cells directly procured from the native context of a tumor micro environment. To study the adaptive patterns of signal pathway events over time, before and after experimental therapy, it is necessary to obtain biopsies from patients before, during, and after therapy. A complementary approach is the profiling of cultured cell lines with and without treatment. Cultured cell models provide the opportunity to study short-term signal changes occurring over minutes to hours. Through this type of system, the effects of particular pharmacological agents may be used to test the effects of signal pathway inhibition or activation on multiple endpoints within a pathway. The complexity of the data generated has necessitated the development of mathematical models for optimal interpretation of interrelated signaling pathways. In combination,clinical proteomic biopsy profiling, tissue culture proteomic profiling, and mathematical modeling synergistically enable a deeper understanding of how protein associations lead to disease states and present new insights into the design of therapeutic regimens.
Resumo:
Outdoor robots such as planetary rovers must be able to navigate safely and reliably in order to successfully perform missions in remote or hostile environments. Mobility prediction is critical to achieving this goal due to the inherent control uncertainty faced by robots traversing natural terrain. We propose a novel algorithm for stochastic mobility prediction based on multi-output Gaussian process regression. Our algorithm considers the correlation between heading and distance uncertainty and provides a predictive model that can easily be exploited by motion planning algorithms. We evaluate our method experimentally and report results from over 30 trials in a Mars-analogue environment that demonstrate the effectiveness of our method and illustrate the importance of mobility prediction in navigating challenging terrain.