523 resultados para Expert systems
A simplified invariant line analysis for face-centred cubic/body-centred cubic precipitation systems
Resumo:
This paper describes and evaluates the novel utility of network methods for understanding human interpersonal interactions within social neurobiological systems such as sports teams. We show how collective system networks are supported by the sum of interpersonal interactions that emerge from the activity of system agents (such as players in a sports team). To test this idea we trialled the methodology in analyses of intra-team collective behaviours in the team sport of water polo. We observed that the number of interactions between team members resulted in varied intra-team coordination patterns of play, differentiating between successful and unsuccessful performance outcomes. Future research on small-world networks methodologies needs to formalize measures of node connections in analyses of collective behaviours in sports teams, to verify whether a high frequency of interactions is needed between players in order to achieve competitive performance outcomes.
Resumo:
Halogen bonding has been observed for the first time between an isoindoline nitroxide and an iodoperfluorocarbon (see figure), which cocrystallize to form a discrete 2:1 supramolecular compound in which NO.⋅⋅⋅I halogen bonding is the dominant intermolecular interaction. This illustrates the potential use of halogen bonding and isoindoline nitroxide tectons for the assembly of organic spin systems...
Resumo:
Soil organic carbon (C) sequestration rates based on the Intergovernmental Panel for Climate Change (IPCC) methodology were combined with local economic data to simulate the economic potential for C sequestration in response to conservation tillage in the six agro-ecological zones within the Southern Region of the Australian grains industry. The net C sequestration rate over 20 years for the Southern Region (which includes discounting for associated greenhouse gases) is estimated to be 3.6 or 6.3 Mg C/ha after converting to either minimum or no-tillage practices, respectively, with no-till practices estimated to return 75% more carbon on average than minimum tillage. The highest net gains in C per ha are realised when converting from conventional to no-tillage practices in the high-activity clay soils of the High Rainfall and Wimmera agro-ecological zones. On the basis of total area available for change, the Slopes agro-ecological zone offers the highest net returns, potentially sequestering an additional 7.1 Mt C under no-tillage scenario over 20 years. The economic analysis was summarised as C supply curves for each of the 6 zones expressing the total additional C accumulated over 20 years for a price per t C sequestered ranging from zero to AU$200. For a price of $50/Mg C, a total of 427 000 Mg C would be sequestered over 20 years across the Southern Region, <5% of the simulated C sequestration potential of 9.1 Mt for the region. The Wimmera and Mid-North offer the largest gains in C under minimum tillage over 20 years of all zones for all C prices. For the no-tillage scenario, for a price of $50/Mg C, 1.74 Mt C would be sequestered over 20 years across the Southern Region, <10% of the simulated C sequestration potential of 18.6 Mt for the region over 20 years. The Slopes agro-ecological zone offers the best return in C over 20 years under no-tillage for all C prices. The Mallee offers the least return for both minimum and no-tillage scenarios. At a price of $200/Mg C, the transition from conventional tillage to minimum or no-tillage practices will only realise 19% and 33%, respectively, of the total biogeochemical sequestration potential of crop and pasture systems of the Southern Region over a 20-year period.
Resumo:
Increasingly, national and international governments have a strong mandate to develop national e-health systems to enable delivery of much-needed healthcare services. Research is, therefore, needed into appropriate security and reliance structures for the development of health information systems which must be compliant with governmental and alike obligations. The protection of e-health information security is critical to the successful implementation of any e-health initiative. To address this, this paper proposes a security architecture for index-based e-health environments, according to the broad outline of Australia’s National E-health Strategy and National E-health Transition Authority (NEHTA)’s Connectivity Architecture. This proposal, however, could be equally applied to any distributed, index-based health information system involving referencing to disparate health information systems. The practicality of the proposed security architecture is supported through an experimental demonstration. This successful prototype completion demonstrates the comprehensibility of the proposed architecture, and the clarity and feasibility of system specifications, in enabling ready development of such a system. This test vehicle has also indicated a number of parameters that need to be considered in any national indexed-based e-health system design with reasonable levels of system security. This paper has identified the need for evaluation of the levels of education, training, and expertise required to create such a system.
Resumo:
Expert elicitation is the process of determining what expert knowledge is relevant to support a quantitative analysis and then eliciting this information in a form that supports analysis or decision-making. The credibility of the overall analysis, therefore, relies on the credibility of the elicited knowledge. This, in turn, is determined by the rigor of the design and execution of the elicitation methodology, as well as by its clear communication to ensure transparency and repeatability. It is difficult to establish rigor when the elicitation methods are not documented, as often occurs in ecological research. In this chapter, we describe software that can be combined with a well-structured elicitation process to improve the rigor of expert elicitation and documentation of the results
Resumo:
This panel discusses the impact of Green IT on information systems and how information systems can meet environmental challenges and ensure sustainability. We wish to highlight the role of green business processes, and specifically the contributions that the management of these processes can play in leveraging the transformative power of IS in order to create an environmentally sustainable society. The management of business processes has typically been thought of in terms of business improvement alongside the dimensions time, cost, quality, or flexibility – the so-called ‘devil’s quadrangle’. Contemporary organizations, however, increasingly become aware of the need to create more sustainable, IT-enabled business processes that are also successful in terms of their economic, ecological, as well as social impact. Exemplary ecological key performance indicators that increasingly find their way into the agenda of managers include carbon emissions, data center energy, or renewable energy consumption (SAP 2010). The key challenge, therefore, is to extend the devil’s quadrangle to a devil’s pentagon, including sustainability as an important fifth dimension in process change.
Resumo:
Specialisation in nursing enables a nurse to focus, in much greater depth, on the requisite knowledge and skills for providing patients with the best possible care. Nephrology nursing is one such area where specialisation has evolved. The characteristic focus of practice emerged as an important feature during a study into the process of expertise acquisition in nephrology nursing practice. Using grounded theory methodology, this study involved 6 non-expert and 11 expert nurses and took place in one renal unit in New South Wales. Nephrology nursing practice was observed for 103 hours, and this was immediately followed by semi-structured interviews. The characteristic of focus was conceptualised as the nurses' centre of attention or concentration while they were undertaking nursing activities. Focus ranged from inexperienced non-expert nurses concentrating predominantly on the immediate task at hand, experienced non-expert nurses who focussed on the medium term to expert nurses who viewed actions (and their possible consequences) more broadly and in the longer term. Of significance to nursing, is how nephrology nurses alter their focus of practice as they acquire and exercise their developing expertise in this specialty.
Resumo:
Papers on Parliament No. 55 February 2011 Charles Sampford "Parliament, Political Ethics and National Integrity Systems*" Prev | Contents |
Resumo:
Stem cells have attracted tremendous interest in recent times due to their promise in providing innovative new treatments for a great range of currently debilitating diseases. This is due to their potential ability to regenerate and repair damaged tissue, and hence restore lost body function, in a manner beyond the body's usual healing process. Bone marrow-derived mesenchymal stem cells or bone marrow stromal cells are one type of adult stem cells that are of particular interest. Since they are derived from a living human adult donor, they do not have the ethical issues associated with the use of human embryonic stem cells. They are also able to be taken from a patient or other donors with relative ease and then grown readily in the laboratory for clinical application. Despite the attractive properties of bone marrow stromal cells, there is presently no quick and easy way to determine the quality of a sample of such cells. Presently, a sample must be grown for weeks and subject to various time-consuming assays, under the direction of an expert cell biologist, to determine whether it will be useful. Hence there is a great need for innovative new ways to assess the quality of cell cultures for research and potential clinical application. The research presented in this thesis investigates the use of computerised image processing and pattern recognition techniques to provide a quicker and simpler method for the quality assessment of bone marrow stromal cell cultures. In particular, aim of this work is to find out whether it is possible, through the use of image processing and pattern recognition techniques, to predict the growth potential of a culture of human bone marrow stromal cells at early stages, before it is readily apparent to a human observer. With the above aim in mind, a computerised system was developed to classify the quality of bone marrow stromal cell cultures based on phase contrast microscopy images. Our system was trained and tested on mixed images of both healthy and unhealthy bone marrow stromal cell samples taken from three different patients. This system, when presented with 44 previously unseen bone marrow stromal cell culture images, outperformed human experts in the ability to correctly classify healthy and unhealthy cultures. The system correctly classified the health status of an image 88% of the time compared to an average of 72% of the time for human experts. Extensive training and testing of the system on a set of 139 normal sized images and 567 smaller image tiles showed an average performance of 86% and 85% correct classifications, respectively. The contributions of this thesis include demonstrating the applicability and potential of computerised image processing and pattern recognition techniques to the task of quality assessment of bone marrow stromal cell cultures. As part of this system, an image normalisation method has been suggested and a new segmentation algorithm has been developed for locating cell regions of irregularly shaped cells in phase contrast images. Importantly, we have validated the efficacy of both the normalisation and segmentation method, by demonstrating that both methods quantitatively improve the classification performance of subsequent pattern recognition algorithms, in discriminating between cell cultures of differing health status. We have shown that the quality of a cell culture of bone marrow stromal cells may be assessed without the need to either segment individual cells or to use time-lapse imaging. Finally, we have proposed a set of features, that when extracted from the cell regions of segmented input images, can be used to train current state of the art pattern recognition systems to predict the quality of bone marrow stromal cell cultures earlier and more consistently than human experts.