554 resultados para ENHANCED STRUCTURE ELUCIDATION
Resumo:
Outdoor robots such as planetary rovers must be able to navigate safely and reliably in order to successfully perform missions in remote or hostile environments. Mobility prediction is critical to achieving this goal due to the inherent control uncertainty faced by robots traversing natural terrain. We propose a novel algorithm for stochastic mobility prediction based on multi-output Gaussian process regression. Our algorithm considers the correlation between heading and distance uncertainty and provides a predictive model that can easily be exploited by motion planning algorithms. We evaluate our method experimentally and report results from over 30 trials in a Mars-analogue environment that demonstrate the effectiveness of our method and illustrate the importance of mobility prediction in navigating challenging terrain.
Resumo:
Large arrays and networks of carbon nanotubes, both single- and multi-walled, feature many superior properties which offer excellent opportunities for various modern applications ranging from nanoelectronics, supercapacitors, photovoltaic cells, energy storage and conversation devices, to gas- and biosensors, nanomechanical and biomedical devices etc. At present, arrays and networks of carbon nanotubes are mainly fabricated from the pre-fabricated separated nanotubes by solution-based techniques. However, the intrinsic structure of the nanotubes (mainly, the level of the structural defects) which are required for the best performance in the nanotube-based applications, are often damaged during the array/network fabrication by surfactants, chemicals, and sonication involved in the process. As a result, the performance of the functional devices may be significantly degraded. In contrast, directly synthesized nanotube arrays/networks can preclude the adverse effects of the solution-based process and largely preserve the excellent properties of the pristine nanotubes. Owing to its advantages of scale-up production and precise positioning of the grown nanotubes, catalytic and catalyst-free chemical vapor depositions (CVD), as well as plasma-enhanced chemical vapor deposition (PECVD) are the methods most promising for the direct synthesis of the nanotubes.
Resumo:
Austinite (CaZnAsO4⋅OH) is a unique secondary mineral in arsenic-contaminated mine wastes. The infrared and Raman spectroscopies were used to characterize the austenite vibrations. The IR bands at 369, 790 and 416 cm−1 are assigned to the ν2, ν3 and ν4 vibrations of AsO43− unit, respectively. The Raman bands at 814, 779 and 403 cm−1 correspond to the ν1, ν3 and ν4 vibrations of AsO43− unit respectively. The sharp bands at 3265 cm−1 for IR and 3270 cm−1 both reveals that the structural hydroxyl units exist in the austenite structure. The IR and Raman spectra both show that some SO4 units isomorphically replace AsO4 in austinite. X-ray single crystal diffraction provides the arrangement of each atom in the mineral structure, and also confirms that the conclusions made from the vibrational spectra. Micro-powder diffraction was used to confirm our mineral identification due to the small quantity of the austenite crystals.
Resumo:
Graphene has received great interest from researchers all over the world owing to its unique properties. Much of the excitement surrounding graphene is due to its remarkable properties and inherent quantum effects. These effects and properties make it a desirable material for the fabrication of new devices. Graphene has a plethora of potential uses including gas and molecular sensors, electronics, spintronics and optics [1-7]. Interestingly, some of these properties have been known about since before the material was even isolated due to a considerable amount of theoretical work and simulations. The material was to some extent a condensed matter modelers "toy" as it was used as a benchmark 2D material Graphene had been used for a long time as the fundamental building block of many other carbon structures...
Resumo:
We present a theoretical model describing a plasma-assisted growth of carbon nanofibers (CNFs), which involves two competing channels of carbon incorporation into stacked graphene sheets: via surface diffusion and through the bulk of the catalyst particle (on the top of the nanofiber), accounting for a range of ion- and radical-assisted processes on the catalyst surface. Using this model, it is found that at low surface temperatures, Ts, the CNF growth is indeed controlled by surface diffusion, thus quantifying the semiempirical conclusions of earlier experiments. On the other hand, both the surface and bulk diffusion channels provide a comparable supply of carbon atoms to the stacked graphene sheets at elevated synthesis temperatures. It is also shown that at low Ts, insufficient for effective catalytic precursor decomposition, the plasma ions play a key role in the production of carbon atoms on the catalyst surface. The model is used to compute the growth rates for the two extreme cases of thermal and plasma-enhanced chemical vapor deposition of CNFs. More importantly, these results quantify and explain a number of observations and semiempirical conclusions of earlier experiments.
Resumo:
Two kinds of floating electrode, floating dielectric barrier covered electrode (FDBCE) and floating pin electrode (FPE), which can enhance the performance of plasma jet are reported. The intense discharge between the floating electrode and power electrode decreased the voltage to trigger the plasma jet substantially. The transition of plasma bullet from ring shape to disk shape in the high helium concentration region happened when the floating electrode was totally inside the powered ring electrode. The enhanced electric field between propagating plasma bullet and ground electrode is the reason for this transition. The double plasma bullets happened when part of the FDBCE was outside the powered ring electrode, which is attributed to the structure and surface charge of FDBCE. As part of the FPE was outside the powered ring electrode, the return stroke resulted in a single intensified plasma channel between FPE and ground electrode.
Resumo:
Handover performance is critical to support real-time traffic applications in wireless network communications. The longer the handover delay is, the longer an Mobile Node (MN) is prevented from sending and receiving any data packet. In real-time network communication applications, such as VoIP and video-conference, a long handover delay is often unacceptable. In order to achieve better handover performance, Fast Proxy Mobile IPv6 (FPMIPv6) has been standardised as an improvement to the original Proxy Mobile IPv6 (PMIPv6) in the Internet Engineering Task Force (IETF). The FPMIPv6 adopts a link layer triggering mechanism to perform two modes of operation: predictive and reactive modes. Using the link layer triggering, the handover performance of the FPMIPv6 can be improved in the predictive mode. However, an unsuccessful predictive handover operation will lead to activation of a reactive handover. In the reactive mode, MNs still experience long handover delays and a large amount of packet loss, which significantly degrade the handover performance of the FPMIPv6. Addressing this problem, this thesis presents an Enhanced Triggering Mechanism (ETM) in the FPMIPv6 to form an enhanced FPMIPv6 (eFPMIPv6). The ETM reduces the most time consuming processes in the reactive handover: the failed Handover Initiate (HO-Initiate) delay and bidirectional tunnel establishment delay. Consequently, the overall handover performance of the FPMIPv6 is enhanced in the eFPMIPv6. To show the advantages of the proposed eFPMIPv6, a theoretical analysis is carried out to mathematically model the performance of PMIPv6, FPMIPv6 and eFPMIPv6. Extensive case studies are conducted to validate the effectiveness of the presented eFPMIPv6 mechanism. They are carried out under various scenarios with changes in network link delay, traffic load, number of hops and MN moving velocity. The case studies show that the proposed mechanism ETM reduces the reactive handover delay, and the presented eFPMIPv6 outperforms the PMIPv6 and FPMIPv6 in terms of the overall handover performance.
Resumo:
The major structural components of HIV are synthesized as a 55-kDa polyprotein, Gag. Particle formation is driven by the self-assembly of Gag into a curved hexameric lattice, the structure of which is poorly understood. We used cryoelectron tomography and contrast-transfer-function corrected subtomogram averaging to study the structure of the assembled immature Gag lattice to approximate to 17-angstrom resolution. Gag is arranged in the immature virus as a single, continuous, but incomplete hexameric lattice whose curvature is mediated without a requirement for pentameric defects. The resolution of the structure allows positioning of individual protein domains. High-resolution crystal structures were fitted into the reconstruction to locate protein-protein interfaces involved in Gag assembly, and to identify the structural transformations associated with virus maturation. The results of this study suggest a concept for the formation of nonsymmetrical enveloped viruses of variable sizes.
Resumo:
This project was a preliminary step towards the development of novel methods for early stage cancer diagnosis and treatment. Diagnostic imaging agents with high Raman signal enhancement were developed based on tailored assemblies of gold nanoparticles, which demonstrated potential for non-invasive detection from deep under the skin surface. Specifically designed polymers were employed to assemble gold nanoparticles into controlled morphologies including dimers, nanochains, nanoplates, globular and core-satellite nanostructures. Our findings suggest that the Raman enhancement is strongly dependent on assembly morphology and can be tuned to adapt to the requirements of the diagnostic agent.
Resumo:
The surface enhanced Raman scattering effect has shown immense potential for detecting trace amounts of explosive vapor molecules. To date, efforts to produce a commercially available, reliable SERS sensor have been impeded by an inability to separate the electromagnetic enhancement produced by the metallic nanostructure from other signal enhancing effects. Here, we show a new Raman sensor that uses surface acoustic waves (SAWs) to produce controllable surface structures on gold films deposited on LiNbO3 substrates that modulate the Raman signal of a target compound (thiophenol) adsorbed on the films. We demonstrate that this sensor can dynamically control the Raman signal simply by changing the SAW’s amplitude, allowing the Raman signal enhancement factor to be directly measured with no variation in the concentration of the target compound. The physically adsorbed molecules can be removed from the sensor without physical cleaning or damage, making it possible to reuse it for real-time Raman detection.
Resumo:
We investigate the blend morphology and performance of bulk heterojunction organic photovoltaic devices comprising the donor polymer, pDPP-TNT (poly{3,6-dithiophene-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1, 4-dione-alt-naphthalene}) and the fullerene acceptor, [70]PCBM ([6,6]-phenyl C71-butyric acid methyl ester). The blend morphology is heavily dependent upon the solvent system used in the fabrication of thin films. Thin films spin-coated from chloroform possess a cobblestone-like morphology, consisting of thick, round-shaped [70]PCBM-rich mounds separated by thin polymer-rich valleys. The size of the [70]PCBM domains is found to depend on the overall film thickness. Thin films spin-coated from a chloroform:dichlorobenzene mixed solvent system are smooth and consist of a network of pDPP-TNT nanofibers embedded in a [70]PCBM-rich matrix. Rinsing the films in hexane selectively removes [70]PCBM and allows for analysis of domain size and purity. It also provides a means for investigating exciton dissociation efficiency through relative photoluminescence yield measurements. Devices fabricated from chloroform solutions show much poorer performance than the devices fabricated from the mixed solvent system; this disparity in performance is seen to be more pronounced with increasing film thickness. The primary cause for the improved performance of devices fabricated from mixed solvents is attributed to the greater donor-acceptor interfacial area and resulting greater capacity for charge carrier generation.
Resumo:
Mass-guided fractionation of the MeOH extract from a specimen of the Australian marine sponge Hyrtios sp. resulted in the isolation of two new tryptophan alkaloids, 6-oxofascaplysin (2), and secofascaplysic acid (3), in addition to the known metabolites fascaplysin (1) and reticulatate (4). The structures of all molecules were determined following NMR and MS data analysis. Structural ambiguities in 2 were addressed through comparison of experimental and DFT-generated theoretical NMR spectral values. Compounds 1–4 were evaluated for their cytotoxicity against a prostate cancer cell line (LNCaP) and were shown to display IC50 values ranging from 0.54 to 44.9 μM.
Resumo:
Should the firm move successfully into a growth or expansion phase the owner manager will be required to increase the scale and scope of its operations. Part of this expansion will involve hiring additional employees, and increasing the overall complexity of the firm's activities. It is likely that the need for greater levels of professional management will be required to operate the firm, along with the need for enhanced planning and the introduction of systems to support the new levels of complexity. The transition from a small, owner-managed firm to a large systems-managed business will require the development of a team-based management approach with greater specialisation within the management team. Corporate governance is also likely to change as the growth cycle takes place. As it grows, the business will become more formalised in its accounting, management and other systems. The need for greater quantities of capital is likely to lead the business towards equity finance. As new equity partner are taken into the company the original owner managers may find their level of control diminished. The larger the firm becomes the more likely its management structure will become decentralised with greater separation between the owner and the firm in terms of operational and financial matters.
Resumo:
This thesis is a study in narratology that examines the pre-theoretical ideas that underlie the study of narrative and time. The thesis explores how the lemniscate can be transported from geometry to narrative in order to structure a non-linear story that breaks the rules of causality and chronology by coupling physical movement through space with the backward pull of memory. The findings offer new possibilities for understanding the nexus between shape and story and for recording non-linear narratives that are marked by simultaneity, counterpoint, and reversal.