594 resultados para ELECTROCHEMICAL-CELL
Resumo:
Tobacco use is causally associated with head and neck squamous cell cancer (HNSCC). Here, we present the results of a case-control study that investigated the effects that the genetic variants of the cytochrome (CYP)1A1, CYP1B1, glutathione-S-transferase (GST)M1, GSTT1, and GSTP1 genes have on modifying the risk of smoking-related HNSCC. Allelisms of the CYP1A1, GSTT1, GSTM1, and GSTT1 genes alone were not associated with an increased risk. CYP1B1 codon 432 polymorphism was found to be a putative susceptibility factor in smoking-related HNSCC. The frequency of CYP1B1 polymorphism was significantly higher (P < 0.001) in the group of smoking cases when compared with smoking controls. Additionally, an odds ratio (OR) of 4.53 (2.62-7.98) was discovered when investigating smoking and nonsmoking cases for the susceptible genotype CYP1B1*2/*2, when compared with the presence of the genotype wild type. In combination with polymorphic variants of the GST genes, a synergistic-effect OR was observed. The calculated OR for the combined genotype CYP1B1*2/*2 and GSTM1*2/*2 was 12.8 (4.09-49.7). The calculated OR for the combined genotype was 13.4 (2.92-97.7) for CYP1B1*2/*2 and GSTT1*2/*2, and 24.1 (9.36-70.5) for the combination of CYP1B1*2/*2 and GSTT1-expressors. The impact of the polymorphic variants of the CYP1B1 gene on HNSCC risk is reflected by the strong association with the frequency of somatic mutations of the p53 gene. Smokers with susceptible genotype CYP1B1*2/*2 were 20 times more likely to show evidence of p53 mutations than were those with CYP1B1 wild type. Combined genotype analysis of CYP1B1 and GSTM1 or GSTT1 revealed interactive effects on the occurrence of p53 gene mutations. The results of the present study indicate that polymorphic variants of CYP1B1 relate significantly to the individual susceptibility of smokers to HNSCC.
Resumo:
Background This study reviewed the clinical presentation, cytologic findings and the immunophenotype of 69 Merkel Cell Carcinoma (MCC) cases sampled by FNA. Methods Demographic and clinical data, the cytology findings and results of ancillary testing were reviewed. Results Median patient age was 78 years (37 – 104) with a 1:1.8 female to male ratio. The most common FNA sites sampled included lymph nodes in the neck, the axillary region, the inguinal region and the parotid gland. Most patients had a history of MCC (68%) &/or non-MCC malignancy (70%). The common cytologic pattern was a cellular smear with malignant cells arranged in a dispersed pattern with variable numbers of disorganised groups of cells. Cytoplasm was scant or absent and nuclei showed mild to moderate anisokaryosis, stippled chromatin, inconspicuous nucleoli and nuclear molding. Numerous apoptotic bodies were often present. Cell block samples (28 cases) were usually positive for cytokeratins in a perinuclear dot pattern, including 88% of cases with CK20 positivity. CD56 was the most sensitive (95%) neuroendocrine marker on cell blocks and was also positive with flow cytometry in 9 cases tested. Conclusions MCC is most commonly seen in FNA specimens from the head and neck of elderly patients, often with a history of previous skin lesions. Occasional cases present in younger patients and some may be mistaken for other round blue cell tumors, such as lymphoma. CD 56 may be a useful marker in cell block preparations and in flow cytometric analysis of MCC.
Resumo:
Rationale: Chronic lung disease characterized by loss of lung tissue,inflammation, and fibrosis represents a major global health burden. Cellular therapies that could restore pneumocytes and reduce inflammation and fibrosis would be a major advance in management. Objectives: To determine whether human amnion epithelial cells (hAECs), isolated from term placenta and having stem cell–like and antiinflammatory properties, could adopt an alveolar epithelial phenotype and repair a murine model of bleomycin-induced lung injury. Methods: Primary hAECs were cultured in small airway growth medium to determine whether the cells could adopt an alveolar epithelial phenotype. Undifferentiated primary hAECs were also injected parenterally into SCID mice after bleomycin-induced lung injury and analyzed for production of surfactant protein (SP)-A, SP-B, SP-C, and SP-D. Mouse lungs were also analyzed for inflammation and collagen deposition. Measurements and Main Results: hAECs grown in small airway growth medium developed an alveolar epithelial phenotype with lamellar body formation, production of SPs A–D, and SP-D secretion. Although hAECs injected into mice lacked SPs, hAECs recovered from mouse lungs 2 weeks posttransplantation produced SPs. hAECs remained engrafted over the 4-week test period. hAEC administration reduced inflammation in association with decreased monocyte chemoattractant protein-1, tumor necrosis factor-a, IL-1 and -6, and profibrotic transforming growth factor-b in mouse lungs. In addition,lung collagen content was significantly reduced by hAEC treatment as a possible consequence of increased degradation by matrix metalloproteinase-2 and down-regulation of the tissue inhibitors f matrix metalloproteinase-1 and 2. Conclusions: hAECs offer promise as a cellular therapy for alveolar restitution and to reduce lung inflammation and fibrosis.
Resumo:
Ascidians are marine invertebrates that have been a source of numerous cytotoxic compounds. Of the first six marine-derived drugs that made anticancer clinical trials, three originated from ascidian specimens. In order to identify new anti-neoplastic compounds, an ascidian extract library (143 samples) was generated and screened in MDA-MB-231 breast cancer cells using a real-time cell analyzer (RTCA). This resulted in 143 time-dependent cell response profiles (TCRP), which are read-outs of changes to the growth rate, morphology, and adhesive characteristics of the cell culture. Twenty-one extracts affected the TCRP of MDA-MB-231 cells and were further investigated regarding toxicity and specificity, as well as their effects on cell morphology and cell cycle. The results of these studies were used to prioritize extracts for bioassay-guided fractionation, which led to the isolation of the previously identified marine natural product, eusynstyelamide B (1). This bis-indole alkaloid was shown to display an IC50 of 5 μM in MDA-MB-231 cells. Moreover, 1 caused a strong cell cycle arrest in G2/M and induced apoptosis after 72 h treatment, making this molecule an attractive candidate for further mechanism of action studies.
Resumo:
Aims: Caveolin-1 (cav1) is reported to have both cell survival and pro-apoptotic characteristics. This may be explained by its localisation or phosphorylation in injured cells. This study investigated the role of cav1 in kidney cells of different nephron origin and developmental state after oxidative stress. Methods: Renal MCDK distal tubular, HK2 proximal tubular epithelial cells and HEK293T renal embryonic cells were treated with 1mM hydrogen peroxide. Apoptosis, loss of cell adhesion, and cell survival were compared with expression of cav1 in its non-phosphorylated and phosphorylated (p-cav1) forms. Cav1 was transfected into the HEK293T cells, or caveolae were disrupted with filipin or nystatin in HK2 cells, to investigate functions of cav1 and p-cav1. Results: Oxidative stress induced more apoptosis in HK2s than MDCKs (p<0.05). HK2s had lower endogenous cav1 and p-cav1 than MDCKs (p<0.05). Both cell lines had increased p-cav1, but not cav1, with oxidative stress. This increase was greatest in MDCKs (p<0.01). Cav1 was located mainly in the plasma membrane of untreated cells and translocated to the cytoplasm with oxidative stress in both cell lines, more so in MDCKs. Disruption of caveolae caused cytoplasmic translocation of cav1 in HK2s, but did not alter high levels of oxidative stress-induced apoptosis. When HEK293Ts lacking endogenous cav1 were transfected with cav1, oxidant-induced apoptosis and loss of cell adhesion was decreased (p<0.01), and p-cav1 was induced by treatment. Conclusion: Cav1 expression and localisation in kidney cells is not anti-apoptotic, but increased expression of p-cav1 may promote cell survival after oxidative stress. © 2008 Royal College of Pathologists of Australasia.
Resumo:
To complement the existing treatment guidelines for all tumour types, ESMO organises consensus conferences to focus on specific issues in each type of tumour. The 2nd ESMO Consensus Conference on Lung Cancer was held on 11-12 May 2013 in Lugano. A total of 35 experts met to address several questions on non-small-cell lung cancer (NSCLC) in each of four areas: pathology and molecular biomarkers, first-line/second and further lines in advanced disease, earlystage disease and locally advanced disease. For each question, recommendations were made including reference to the grade of recommendation and level of evidence. This consensus paper focuses on early-stage disease. © The Author 2014. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved.
Resumo:
To complement the existing treatment guidelines for all tumour types, ESMO organises consensus conferences to focus on specific issues in each type of tumour. The 2nd ESMO Consensus Conference on Lung Cancer was held on 11-12 May 2013 in Lugano. A total of 35 experts met to address several questions on non-small-cell lung cancer (NSCLC) in each of four areas: pathology and molecular biomarkers, first-line/second and further lines in advanced disease, early stage disease and locally-advanced disease. For each question, recommendations were made including reference to the grade of recommendation and level of evidence. This consensus paper focuses on 1st line / 2nd and further lines of treatment in advanced disease. © The Author 2014. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved.
Resumo:
INTRODUCTION: The phase III FLEX study (NCT00148798) in advanced non-small-cell lung cancer indicated that the survival benefit associated with the addition of cetuximab to cisplatin and vinorelbine was limited to patients whose tumors expressed high levels of epidermal growth factor receptor (EGFR) (immunohistochemistry score of >/=200; scale 0-300). We assessed whether the treatment effect was also modulated in FLEX study patients by tumor EGFR mutation status. METHODS: A tumor mutation screen of EGFR exons 18 to 21 included 971 of 1125 (86%) FLEX study patients. Treatment outcome in low and high EGFR expression groups was analyzed across efficacy endpoints according to tumor EGFR mutation status. RESULTS: Mutations in EGFR exons 18 to 21 were detected in 133 of 971 tumors (14%), 970 of which were also evaluable for EGFR expression level. The most common mutations were exon 19 deletions and L858R (124 of 133 patients; 93%). In the high EGFR expression group (immunohistochemistry score of >/=200), a survival benefit for the addition of cetuximab to chemotherapy was demonstrated in patients with EGFR wild-type (including T790M mutant) tumors. Although patient numbers were small, those in the high EGFR expression group whose tumors carried EGFR mutations may also have derived a survival benefit from the addition of cetuximab to chemotherapy. Response data suggested a cetuximab benefit in the high EGFR expression group regardless of EGFR mutation status. CONCLUSIONS: The survival benefit associated with the addition of cetuximab to first-line chemotherapy for advanced non-small-cell lung cancer expressing high levels of EGFR is not limited by EGFR mutation status.
Resumo:
To complement the existing treatment guidelines for all tumour types, ESMO organises consensus conferences to focus on specific issues in each type of tumour. The Second ESMO Consensus Conference on Lung Cancer was held on 11-12 May 2013 in Lugano. A total of 35 experts met to address several questions on management of patients with nonsmall- cell lung cancer (NSCLC) in each of four areas: pathology and molecular biomarkers, early stage disease, locally advanced disease and advanced (metastatic) disease. For each question, recommendations were made including reference to the grade of recommendation and level of evidence. This consensus paper focuses on recommendations for pathology and molecular biomarkers in relation to the diagnosis of lung cancer, primarily non-small-cell carcinomas.
Resumo:
Semiconducting properties of nanoparticle coating on liquid metal marbles can present opportunities for an additional dimension of control on these soft objects with functional surfaces in aqueous environments. We show the unique differences in the electrochemical actuation mechanisms of liquid metal marbles with n- and p-type semiconducting nanomaterial coating. A systematic study on such liquid metal marbles shows voltage dependent nanoparticle cluster formation and morphological changes of the liquid metal core during electrochemical actuations and these observations are unique to p-type nanomaterial coated liquid metal marbles.
Resumo:
This paper describes the fabrication of thin films of porphyrin and metallophthalocyanine derivatives on different substrates for the optochemical detection of HCl gas and electrochemical determination of L-cysteine (CySH). Solid state gas sensor for HCl gas was fabricated by coating meso-substituted porphyrin derivatives on glass slide and examined optochemical sensing of HCl gas. The concentration of gaseous HCl was monitored from the changes in the absorbance of Soret band. Among the different porphyrin derivatives, meso- tetramesitylporphyrin (MTMP) coated film showed excellent sensitivity towards HCl and achieved a detection limit of 0.03ppm HCl. Further, we have studied the self-assembly of 1,8,15,22-tetraaminometallophthalocyanine (4α-MTAPc; M = Co and Ni) from DMF on GC electrode. The CVs for the self-assembled monolayers (SAMs) of 4α-CoIITAPc and 4α-NiIITAPc show two pairs of well-defined redox couple corresponding to metal and ring. Using the 4α-CoIITAPc SAM modified electrode, sensitive and selective detection of L-cysteine was demonstrated. Further, the SAM modified electrode also successfully separates the oxidation potentials of AA and CySH with a peak separation of 320mV.
Resumo:
Glassy carbon (GC) electrode modified with a self-assembled monolayer (SAM) of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) was used for the selective and highly sensitive determination of nitric oxide (NO). The SAM of 4α-CoIITAPc was formed on GC electrode by spontaneous adsorption from DMF containing 1 mM 4α-CoIITAPc. The SAM showed two pairs of well-defined redox peaks corresponding to CoIII/CoII and CoIIIPc−1/CoIIIPc−2 in 0.2 M phosphate buffer (PB) solution (pH 2.5). The SAM modified electrode showed excellent electrocatalytic activity towards the oxidation of nitric oxide (NO) by enhancing its oxidation current with 310 mV less positive potential shift when compared to bare GC electrode. In amperometric measurements, the current response for NO oxidation was linearly increased in the concentration range of 3×10−9 to 30×10−9 M with a detection limit of 1.4×10−10 M (S/N=3). The proposed method showed a better recovery for NO in human blood serum samples.
Resumo:
Self-assembled monolayer (SAM) of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) was prepared on indium tin oxide (ITO) electrode by spontaneous adsorption from dimethylformamide (DMF) solution containing 4α-CoIITAPc. The SAM of 4α-CoIITAPc formed on ITO electrode was characterized by cyclic voltammetry, Raman and UV–visible spectroscopic techniques. The cyclic voltammogram (CV) of 4α-CoIITAPc SAM shows two pairs of well-defined redox peaks corresponding to CoIII/CoII and CoIIIPc−1/CoIIIPc−2. The surface coverage (Γ) was calculated by integrating the charge under the anodic wave corresponding to CoII oxidation and it was found to be 2.25 × 10−10 mol cm−2. Raman spectrum obtained for the SAM of 4α-CoIITAPc on ITO surface shows strong stretching and breathing bands of Pc macrocycle, pyrrole ring and isoindole ring. Further, the –NH2 bending mode of vibration was absent for the SAM of 4α-CoIITAPc on ITO surface which indirectly confirmed that all the amino groups of 4α-CoIITAPc are involved in bonding with ITO surface. UV–visible spectrum for the SAM of 4α-CoIITAPc on ITO surface shows an intense B-band, Q-band and n–π∗ transition with slight broadening when compared to that of 4α-CoIITAPc in DMF.
Resumo:
This article describes the highly sensitive and selective determination of epinephrine (EP) using self-assembled monomolecular film (SAMF) of 1,8,15,22-tetraamino-phthalocyanatonickel(II) (4α-NiIITAPc) on Au electrode. The 4α-NiIITAPc SAMF modified electrode was prepared by spontaneous adsorption of 4α-NiIITAPc from dimethylformamide solution. The modified electrode oxidizes EP at less over potential with enhanced current response in contrast to the bare Au electrode. The standard heterogeneous rate constant (k°) for the oxidation of EP at 4α-NiIITAPc SAMF modified electrode was found to be 1.94×10−2 cm s−1 which was much higher than that at the bare Au electrode. Further, it was found that 4α-NiIITAPc SAMF modified electrode separates the voltammetric signals of ascorbic acid (AA) and EP with a peak separation of 250 mV. Using amperometric method the lowest detection limit of 50 nM of EP was achieved at SAMF modified electrode. Simultaneous amperometric determination of AA and EP was also achieved at the SAMF modified electrode. Common physiological interferents such as uric acid, glucose, urea and NaCl do not interfere within the potential window of EP oxidation. The present 4α-NiIITAPc SAMF modified electrode was also successfully applied to determine the concentration of EP in commercially available injection.
Resumo:
This communication presents a new pathway for the more precise quantification of surface-enhanced Raman scattering (SERS) enhancement factor via deducing resonance Raman scattering (RRS) effect from surface-enhanced resonance Raman scattering (SERRS). To achieve this, a self-assembled monolayer of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) is formed on plasmon inactive glassy carbon (GC) and plasmon active GC/AuNPs surface. The surfaces are subsequently used as common probes for electrochemical and Raman (RRS and SERRS) studies. The most crucial parameters required for the quantification of SERS substrate enhancement factor (SSEF) such as real surface area of GC/AuNPs substarte and the number of 4α-CoIITAPc molecules contributing to RRS (on GC) and SERRS (on GC/AuNPs) are precisely estimated by cyclic voltammetry experiments. The present approach of SSEF quantification can be applied to varieties of surfaces by choosing an appropriate laser line and probe molecule for each surface.