787 resultados para Multiple routes planning
Resumo:
Listening skill is allocated inadequate consideration in English language instruction and learning in Iran. At the school level, listening skill is not taught but reading and writing skills are taught traditionally. At the college level, reading skill is emphasised. For students seeking IELTS certification, institutes teach listening skill within the framework of a Communicative Language Teaching (CLT) approach. Nonetheless, despite the official syllabus, many teachers tend to test rather than teach listening skill. Currently, listening skill in the curriculum is embedded in an oral comprehension teaching approach through multiple choice written responses in the institutes. Therefore, the process of explicitly teaching listening is overlooked with a strong emphasis on the post hoc assessment of the products of listening. This study used a mixed methods approach to investigate the relationship between metacognitive strategy instruction and listening performance, metacognitive awareness and use of metacognitive strategies in listening. Three research questions were addressed in this study: - Is there a relationship between metacognitive strategy instruction (planning, monitoring and evaluation) and Iranian High Intermediate students¡¦ listening? „ - Is there a relationship between metacognitive strategy instruction and Iranian High Intermediate students¡¦ metacognitive awareness of listening? - Does metacognitive strategy instruction help Iranian High Intermediate students¡¦ use of metacognitive strategies during listening? A single group (N = 30) of High Intermediate level tertiary students in Iran were guided through a metacognitive strategy instruction over one semester (10 weeks). The first research question was measured through IELTS listening tests, which tracked any change of students’ listening performance. The second research question was analysed through results of a Metacognitive Awareness Listening Questionnaire (MALQ) to survey students’ awareness of metacognitive strategies in listening. Finally, the third research question was analysed through interviews, which explored students’ use of metacognitive strategies in listening. Results indicate that High Intermediate students developed listening performance, but there were no significant changes in metacognitive awareness in listening. Students reported in the interviews that they used multiple strategies (cognitive and metacognitive) to approach listening. Implications for English teaching in Iran and other contexts are discussed.
Resumo:
Background: Malaria is a significant threat to population health in the border areas of Yunnan Province, China. How to accurately measure malaria transmission is an important issue. This study aimed to examine the role of slide positivity rates (SPR) in malaria transmission in Mengla County, Yunnan Province, China. Methods: Data on annual malaria cases, SPR and socio-economic factors for the period of 1993 to 2008 were obtained from the Center for Disease Control and Prevention (CDC) and the Bureau of Statistics, Mengla, China. Multiple linear regression models were conducted to evaluate the relationship between socio-ecologic factors and malaria incidence. Results: The results show that SPR was significantly positively associated with the malaria incidence rates. The SPR (beta = 1.244, p = 0.000) alone and combination (SPR, beta = 1.326, p < 0.001) with other predictors can explain about 85% and 95% of variation in malaria transmission, respectively. Every 1% increase in SPR corresponded to an increase of 1.76/100,000 in malaria incidence rates. Conclusion: SPR is a strong predictor of malaria transmission, and can be used to improve the planning and implementation of malaria elimination programmes in Mengla and other similar locations. SPR might also be a useful indicator of malaria early warning systems in China.
Resumo:
Traditionally, Science education has stressed the importance of teaching students to conduct ‘scientific inquiry’, with the main focus being the experimental model of inquiry used by real world scientists. Current educational approaches using constructivist pedagogy recognise the value of inquiry as a method for promoting the development of deep understanding of discipline content. A recent Information Learning Activity undertaken by a Grade Eight Science class was observed to discover how inquiry based learning is implemented in contemporary Science education. By analysing student responses to questionnaires and assessment task outcomes, the author was able to determine the level of inquiry inherent in the activity and how well the model supported student learning and the development of students’ information literacy skills. Although students achieved well overall, some recommendations are offered that may enable teachers to better exploit the learning opportunities provided by inquiry based learning. Planning interventions at key stages of the inquiry process can assist students to learn more effective strategies for dealing with cognitive and affective challenges. Allowing students greater input into the selection of topic or focus of the activity may encourage students to engage more deeply with the learning task. Students are likely to experience greater learning benefit from access to developmentally appropriate resources, increased time to explore topics and multiple opportunities to undertake information searches throughout the learning activity. Finally, increasing the cognitive challenge can enhance both the depth of students’ learning and their information literacy skills.
Resumo:
Background: Modern healthcare managers are faced with pressure to deliver effective, efficient services within the context of fixed budget constraints. This requires decisions regarding the skill mix of the workforce particularly when staffing new services. One measure used to identify numbers and mix of staff in healthcare settings is workforce ratio. The aim of this study was to identify workforce ratios in nine allied health professions and to identify whether these measures are useful for planning allied health workforce requirements. Method: A systematic literature search using relevant MeSH headings of business, medical and allied health databases and relevant grey literature for the period 2000-2008 was undertaken. Results: Twelve articles were identified which described the use of workforce ratios in allied health services. Only one of these was a staffing ratio linked to clinical outcomes. The most comprehensive measures were identified in rehabilitation medicine. Conclusions: The evidence for use of staffing ratios for allied health practitioners is scarce and lags behind the fields of nursing and medicine.
Resumo:
Reliable ambiguity resolution (AR) is essential to Real-Time Kinematic (RTK) positioning and its applications, since incorrect ambiguity fixing can lead to largely biased positioning solutions. A partial ambiguity fixing technique is developed to improve the reliability of AR, involving partial ambiguity decorrelation (PAD) and partial ambiguity resolution (PAR). Decorrelation transformation could substantially amplify the biases in the phase measurements. The purpose of PAD is to find the optimum trade-off between decorrelation and worst-case bias amplification. The concept of PAR refers to the case where only a subset of the ambiguities can be fixed correctly to their integers in the integer least-squares (ILS) estimation system at high success rates. As a result, RTK solutions can be derived from these integer-fixed phase measurements. This is meaningful provided that the number of reliably resolved phase measurements is sufficiently large for least-square estimation of RTK solutions as well. Considering the GPS constellation alone, partially fixed measurements are often insufficient for positioning. The AR reliability is usually characterised by the AR success rate. In this contribution an AR validation decision matrix is firstly introduced to understand the impact of success rate. Moreover the AR risk probability is included into a more complete evaluation of the AR reliability. We use 16 ambiguity variance-covariance matrices with different levels of success rate to analyse the relation between success rate and AR risk probability. Next, the paper examines during the PAD process, how a bias in one measurement is propagated and amplified onto many others, leading to more than one wrong integer and to affect the success probability. Furthermore, the paper proposes a partial ambiguity fixing procedure with a predefined success rate criterion and ratio-test in the ambiguity validation process. In this paper, the Galileo constellation data is tested with simulated observations. Numerical results from our experiment clearly demonstrate that only when the computed success rate is very high, the AR validation can provide decisions about the correctness of AR which are close to real world, with both low AR risk and false alarm probabilities. The results also indicate that the PAR procedure can automatically chose adequate number of ambiguities to fix at given high-success rate from the multiple constellations instead of fixing all the ambiguities. This is a benefit that multiple GNSS constellations can offer.
Resumo:
With the progressive exhaustion of fossil energy and the enhanced awareness of environmental protection, more attention is being paid to electric vehicles (EVs). Inappropriate siting and sizing of EV charging stations could have negative effects on the development of EVs, the layout of the city traffic network, and the convenience of EVs' drivers, and lead to an increase in network losses and a degradation in voltage profiles at some nodes. Given this background, the optimal sites of EV charging stations are first identified by a two-step screening method with environmental factors and service radius of EV charging stations considered. Then, a mathematical model for the optimal sizing of EV charging stations is developed with the minimization of total cost associated with EV charging stations to be planned as the objective function and solved by a modified primal-dual interior point algorithm (MPDIPA). Finally, simulation results of the IEEE 123-node test feeder have demonstrated that the developed model and method cannot only attain the reasonable planning scheme of EV charging stations, but also reduce the network loss and improve the voltage profile.
Resumo:
Urban land use planning and policy decisions are often contested, with the multiple stakeholders (business, developers, residents, policymakers and the wider community) frequently holding opposing viewpoints about the issues and best solution. In recent years, however, the participatory process of social impact assessment (SIA) has received significant attention as a way to mitigate conflict, facilitating negotiation and conflict resolution. This paper examines how social impacts have informed development appeals in Australia, focussing on ten cases from the Queensland Planning and Environment Court (QPEC). Half are appeals from community members (typically neighbours) wanting to oppose approvals and half from organisations appealing against City Councils’ decisions to deny their development applications. While legal challenges do not necessarily reflect attitudes and practices, they provide a means to begin to assess how social impacts (although not often explicitly defined as such) inform development related disputes. Based on the nature and outcomes of 10 QPEC cases, we argue that many legal cases could have been avoided if SIA had been undertaken appropriately. First, the issues in each case are clearly social, incorporating impacts on amenity, the character of an area, the needs of different social groups, perceptions of risk and a range of other social issues. Second, the outcomes and recommendations from each case, such as negotiating agreements, modifying plans and accommodating community concerns would have been equally served thorough SIA. Our argument is that engagement at an early stage, utilising SIA, could have likely achieved the same result in a less adversarial and much less expensive and time-consuming environment than a legal case.
Resumo:
Although the multiple economic, environmental and social challenges threatening the viability of rural and regional communities in Australia are well-known, little research has explored how community leaders conceptualise the impact and opportunities associated with economic diversification from agriculture into alternative industries, such as tourism and mining. This qualitative research, utilising the Darling Downs in Queensland as a case study, documents how 28 local community leaders have experienced this economic diversification process. The findings reveal that local community leaders have a deep understanding about the opportunities and challenges presented by diversification, articulating a clear vision about how to achieve the best possible future for their region. Despite excitement about growth, there were concerns about preserving heritage, the increased pressure on local infrastructure and an ageing population. By documenting local leader’s insights, these findings may help inform planning for rural and regional communities and facilitate management of the exciting yet challenging process of growth and diversification
Resumo:
The behaviour of single installations of solar energy systems is well understood; however, what happens at an aggregated location, such as a distribution substation, when output of groups of installations cumulate is not so well understood. This paper considers groups of installations attached to distributions substations on which the load is primarily commercial and industrial. Agent-based modelling has been used to model the physical electrical distribution system and the behaviour of equipment outputs towards the consumer end of the network. The paper reports the approach used to simulate both the electricity consumption of groups of consumers and the output of solar systems subject to weather variability with the inclusion of cloud data from the Bureau of Meteorology (BOM). The data sets currently used are for Townsville, North Queensland. The initial characteristics that indicate whether solar installations are cost effective from an electricity distribution perspective are discussed.
Resumo:
Mobile telecommunications have become a key lifestyle and technological trend of the twenty first century. In the context of increased urbanism and pressure on cites for citizen engagement for the purpose of creating good public places the potential of these technologies raises critical questions for planning professionals. Even though technology has become integral to all functions within our urban environment, little is known about perceptions and relationship between urban planners and the ubiquitous, ever-present digital layer of urban data and information. This paper explores this issue, via three focus groups and an additional follow-up interview with planners from local and state government, education and private sector. This paper explores the issues of integrating information and communication technologies into planning practice and the affordances that these technologies offer for community consultation and placemaking.
Resumo:
Performance of urban transit systems may be quantified and assessed using transit capacity and productive capacity in planning, design and operational management activities. Bunker (4) defines important productive performance measures of an individual transit service and transit line, which are extended in this paper to quantify efficiency and operating fashion of transit services and lines. Comparison of a hypothetical bus line’s operation during a morning peak hour and daytime hour demonstrates the usefulness of productiveness efficiency and passenger transmission efficiency, passenger churn and average proportion line length traveled to the operator in understanding their services’ and lines’ productive performance, operating characteristics, and quality of service. Productiveness efficiency can flag potential pass-up activity under high load conditions, as well as ineffective resource deployment. Proportion line length traveled can directly measure operating fashion. These measures can be used to compare between lines/routes and, within a given line, various operating scenarios and time horizons to target improvements. The next research stage is investigating within-line variation using smart card passenger data and field observation of pass-ups. Insights will be used to further develop practical guidance to operators.
Resumo:
Performance of urban transit systems may be quantified and assessed using transit capacity and productive capacity in planning, design and operational management activities. Bunker (4) defines important productive performance measures of an individual transit service and transit line, which are extended in this paper to quantify efficiency and operating fashion of transit services and lines. Comparison of a hypothetical bus line’s operation during a morning peak hour and daytime hour demonstrates the usefulness of productiveness efficiency and passenger transmission efficiency, passenger churn and average proportion line length traveled to the operator in understanding their services’ and lines’ productive performance, operating characteristics, and quality of service. Productiveness efficiency can flag potential pass-up activity under high load conditions, as well as ineffective resource deployment. Proportion line length traveled can directly measure operating fashion. These measures can be used to compare between lines/routes and, within a given line, various operating scenarios and time horizons to target improvements. The next research stage is investigating within-line variation using smart card passenger data and field observation of pass-ups. Insights will be used to further develop practical guidance to operators.
Resumo:
Urban transit system performance may be quantified and assessed using transit capacity and productive capacity for planning, design and operational management. Bunker (4) defines important productive performance measures of an individual transit service and transit line. Transit work (p-km) captures transit task performed over distance. Transit productiveness (p-km/h) captures transit work performed over time. This paper applies productive performance with risk assessment to quantify transit system reliability. Theory is developed to monetize transit segment reliability risk on the basis of demonstration Annual Reliability Event rates by transit facility type, segment productiveness, and unit-event severity. A comparative example of peak hour performance of a transit sub-system containing bus-on-street, busway, and rail components in Brisbane, Australia demonstrates through practical application the importance of valuing reliability. Comparison reveals the highest risk segments to be long, highly productive on street bus segments followed by busway (BRT) segments and then rail segments. A transit reliability risk reduction treatment example demonstrates that benefits can be significant and should be incorporated into project evaluation in addition to those of regular travel time savings, reduced emissions and safety improvements. Reliability can be used to identify high risk components of the transit system and draw comparisons between modes both in planning and operations settings, and value improvement scenarios in a project evaluation setting. The methodology can also be applied to inform daily transit system operational management.
Resumo:
Urban transit system performance may be quantified and assessed using transit capacity and productive capacity for planning, design and operational management. Bunker (4) defines important productive performance measures of an individual transit service and transit line. Transit work (p-km) captures transit task performed over distance. Transit productiveness (p-km/h) captures transit work performed over time. This paper applies productive performance with risk assessment to quantify transit system reliability. Theory is developed to monetize transit segment reliability risk on the basis of demonstration Annual Reliability Event rates by transit facility type, segment productiveness, and unit-event severity. A comparative example of peak hour performance of a transit sub-system containing bus-on-street, busway, and rail components in Brisbane, Australia demonstrates through practical application the importance of valuing reliability. Comparison reveals the highest risk segments to be long, highly productive on street bus segments followed by busway (BRT) segments and then rail segments. A transit reliability risk reduction treatment example demonstrates that benefits can be significant and should be incorporated into project evaluation in addition to those of regular travel time savings, reduced emissions and safety improvements. Reliability can be used to identify high risk components of the transit system and draw comparisons between modes both in planning and operations settings, and value improvement scenarios in a project evaluation setting. The methodology can also be applied to inform daily transit system operational management.