125 resultados para video-otoscopy
Resumo:
The antecedents of channel power (e.g. El-Ansary and Stern, 1972) and the impact of channel structure ( e.g. Anderson and Narus,1984) on channel dynamics have long been important topics within the channel literature. In addition to the theoretical and methodological contributions, research in these areas has helped channel managers to understand how power is generated and used in coordinating distribution strategies in different contexts. The study presented in this paper builds upon these previous literatures, which are first briefly reviewed below.
Resumo:
Visual recording devices such as video cameras, CCTVs, or webcams have been broadly used to facilitate work progress or safety monitoring on construction sites. Without human intervention, however, both real-time reasoning about captured scenes and interpretation of recorded images are challenging tasks. This article presents an exploratory method for automated object identification using standard video cameras on construction sites. The proposed method supports real-time detection and classification of mobile heavy equipment and workers. The background subtraction algorithm extracts motion pixels from an image sequence, the pixels are then grouped into regions to represent moving objects, and finally the regions are identified as a certain object using classifiers. For evaluating the method, the formulated computer-aided process was implemented on actual construction sites, and promising results were obtained. This article is expected to contribute to future applications of automated monitoring systems of work zone safety or productivity.
Resumo:
-
Resumo:
Background Providing ongoing family centred support is an integral part of childhood cancer care. For families living in regional and remote areas, opportunities to receive specialist support are limited by the availability of health care professionals and accessibility, which is often reduced due to distance, time, cost and transport. The primary aim of this work is to investigate the cost-effectiveness of videotelephony to support regional and remote families returning home for the first time with a child newly diagnosed with cancer Methods/design We will recruit 162 paediatric oncology patients and their families to a single centre randomised controlled trial. Patients from regional and remote areas, classified by Accessibility/Remoteness Index of Australia (ARIA+) greater than 0.2, will be randomised to a videotelephone support intervention or a usual support control group. Metropolitan families (ARIA+ ≤ 0.2) will be recruited as an additional usual support control group. Families allocated to the videotelephone support intervention will have access to usual support plus education, communication, counselling and monitoring with specialist multidisciplinary team members via a videotelephone service for a 12-week period following first discharge home. Families in the usual support control group will receive standard care i.e., specialist multidisciplinary team members provide support either face-to-face during inpatient stays, outpatient clinic visits or home visits, or via telephone for families who live far away from the hospital. The primary outcome measure is parental health related quality of life as measured using the Medical Outcome Survey (MOS) Short Form SF-12 measured at baseline, 4 weeks, 8 weeks and 12 weeks. The secondary outcome measures are: parental informational and emotional support; parental perceived stress, parent reported patient quality of life and parent reported sibling quality of life, parental satisfaction with care, cost of providing improved support, health care utilisation and financial burden for families. Discussion This investigation will establish the feasibility, acceptability and cost-effectiveness of using videotelephony to improve the clinical and psychosocial support provided to regional and remote paediatric oncology patients and their families.
Resumo:
As the popularity of video as an information medium rises, the amount of video content that we produce and archive keeps growing. This creates a demand for shorter representations of videos in order to assist the task of video retrieval. The traditional solution is to let humans watch these videos and write textual summaries based on what they saw. This summarisation process, however, is time-consuming. Moreover, a lot of useful audio-visual information contained in the original video can be lost. Video summarisation aims to turn a full-length video into a more concise version that preserves as much information as possible. The problem of video summarisation is to minimise the trade-off between how concise and how representative a summary is. There are also usability concerns that need to be addressed in a video summarisation scheme. To solve these problems, this research aims to create an automatic video summarisation framework that combines and improves on existing video summarisation techniques, with the focus on practicality and user satisfaction. We also investigate the need for different summarisation strategies in different kinds of videos, for example news, sports, or TV series. Finally, we develop a video summarisation system based on the framework, which is validated by subjective and objective evaluation. The evaluation results shows that the proposed framework is effective for creating video skims, producing high user satisfaction rate and having reasonably low computing requirement. We also demonstrate that the techniques presented in this research can be used for visualising video summaries in the form web pages showing various useful information, both from the video itself and from external sources.
Resumo:
Characteristics of surveillance video generally include low resolution and poor quality due to environmental, storage and processing limitations. It is extremely difficult for computers and human operators to identify individuals from these videos. To overcome this problem, super-resolution can be used in conjunction with an automated face recognition system to enhance the spatial resolution of video frames containing the subject and narrow down the number of manual verifications performed by the human operator by presenting a list of most likely candidates from the database. As the super-resolution reconstruction process is ill-posed, visual artifacts are often generated as a result. These artifacts can be visually distracting to humans and/or affect machine recognition algorithms. While it is intuitive that higher resolution should lead to improved recognition accuracy, the effects of super-resolution and such artifacts on face recognition performance have not been systematically studied. This paper aims to address this gap while illustrating that super-resolution allows more accurate identification of individuals from low-resolution surveillance footage. The proposed optical flow-based super-resolution method is benchmarked against Baker et al.’s hallucination and Schultz et al.’s super-resolution techniques on images from the Terrascope and XM2VTS databases. Ground truth and interpolated images were also tested to provide a baseline for comparison. Results show that a suitable super-resolution system can improve the discriminability of surveillance video and enhance face recognition accuracy. The experiments also show that Schultz et al.’s method fails when dealing surveillance footage due to its assumption of rigid objects in the scene. The hallucination and optical flow-based methods performed comparably, with the optical flow-based method producing less visually distracting artifacts that interfered with human recognition.
Resumo:
With the advent of live cell imaging microscopy, new types of mathematical analyses and measurements are possible. Many of the real-time movies of cellular processes are visually very compelling, but elementary analysis of changes over time of quantities such as surface area and volume often show that there is more to the data than meets the eye. This unit outlines a geometric modeling methodology and applies it to tubulation of vesicles during endocytosis. Using these principles, it has been possible to build better qualitative and quantitative understandings of the systems observed, as well as to make predictions about quantities such as ligand or solute concentration, vesicle pH, and membrane trafficked. The purpose is to outline a methodology for analyzing real-time movies that has led to a greater appreciation of the changes that are occurring during the time frame of the real-time video microscopy and how additional quantitative measurements allow for further hypotheses to be generated and tested.
Resumo:
A new method for the detection of abnormal vehicle trajectories is proposed. It couples optical flow extraction of vehicle velocities with a neural network classifier. Abnormal trajectories are indicative of drunk or sleepy drivers. A single feature of the vehicle, eg., a tail light, is isolated and the optical flow computed only around this feature rather than at each pixel in the image.
Resumo:
The increase of powerful mobile devices has accelerated the demand for mobile videos. Previous studies in mobile video have focused on understanding of mobile video usage, improvement of video quality, and user interface design in video browsing. However, research focusing on a deep understanding of users’ needs for a pleasing quality delivery of mobile video is lacking. In particular, what quality-delivery mode users prefer and what information relevant to video quality they need requires attention. This paper presents a qualitative interview study with 38 participants to gain an insight into three aspects: influencing factors of user-desired video quality, user-preferred quality-delivery modes, and user-required interaction information of mobile video. The results show that user requirements for video quality are related to personal preference, technology background and video viewing experience, and the preferred quality-delivery mode and interactive mode are diverse. These complex user requirements call for flexible and personalised quality delivery and interaction of mobile video.
Resumo:
Video games have shown great potential as tools that both engage and motivate players to achieve tasks and build communities in fantasy worlds. We propose that the application of game elements to real world activities can aid in delivering contextual information in interesting ways and help young people to engage in everyday events. Our research will explore how we can unite utility and fun to enhance information delivery, encourage participation, build communities and engage users with utilitarian events situated in the real world. This research aims to identify key game elements that work effectively to engage young digital natives, and provide guidelines to influence the design of interactions and interfaces for event applications in the future. This research will primarily contribute to areas of user experience and pervasive gaming.
Resumo:
To sustain an ongoing rapid growth of video information, there is an emerging demand for a sophisticated content-based video indexing system. However, current video indexing solutions are still immature and lack of any standard. This doctoral consists of a research work based on an integrated multi-modal approach for sports video indexing and retrieval. By combining specific features extractable from multiple audio-visual modalities, generic structure and specific events can be detected and classified. During browsing and retrieval, users will benefit from the integration of high-level semantic and some descriptive mid-level features such as whistle and close-up view of player(s).
Resumo:
Player experience of spatiality in first-person, single-player games is informed by the maps and navigational aids provided by the game. This project uses textual analysis to examine the way these maps and navigational aids inform the experience of spatiality in Fallout 3, BioShock and BioShock 2. Spatiality is understood as trialectic, incorporating perceived, conceived and lived space, drawing on the work of Henri Lefebvre and Edward Soja. The most prominent elements of the games’ maps and navigational aids are analysed in terms of how they inform players’ experience of the games’ spaces. In particular this project examines the in-game maps these games incorporate, the waypoint navigation and fast-travel systems in Fallout 3, and the guide arrow and environmental cues in the BioShock games.