179 resultados para spectrum of transition operator


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores the role of culture in Knowledge Management (KM) through a spectrum of cultural and institutional perspectives. The case studies cover a wide range of countries in Africa, Asia, the Middle East, Latin America as well as transition economies of the former socialist countries in Eastern Europe. The paper demonstrates how knowledge management processes and practices are influenced by local culture and institutions as well as interaction with the broader international community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transition from early intervention programs to inclusive school settings presents children with developmental disabilities with a range of social challenges. In Queensland, in the year of transition to school, many children with developmental disabilities attend an Early Childhood Development Program for 2 to 3 days each week and also begin attendance in a mainstream program with the latter increasing to full-time attendance during the year. Quantitative and qualitative data were collected by parent interviews and teacher questionnaires for 62 children participating in the Transition to School Project regarding their perceptions of the success of the transition process and the benefits and challenges of inclusion. Both parents and teachers saw a range of benefits to children from their inclusion in ‘regular’ classrooms, with parents noting the helpfulness of teachers and their support for inclusion. Challenges noted by parents included the school’s lack of preparation for their child’s particular developmental needs especially in terms of the physical environment while teachers reported challenges meeting the needs of these children within the context and resources of the classroom. Parents were more likely than teachers to view the transition as easy. Correlational analyses indicated that teachers were more likely to view the transition as easy when they felt that the child was appropriately placed in a ‘regular’ classroom. Findings from this project can inform the development of effective transition-to-school programs in the early school years for children with developmental disabilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteases regulate a spectrum of diverse physiological processes, and dysregulation of proteolytic activity drives a plethora of pathological conditions. Understanding protease function is essential to appreciating many aspects of normal physiology and progression of disease. Consequently, development of potent and specific inhibitors of proteolytic enzymes is vital to provide tools for the dissection of protease function in biological systems and for the treatment of diseases linked to aberrant proteolytic activity. The studies in this thesis describe the rational design of potent inhibitors of three proteases that are implicated in disease development. Additionally, key features of the interaction of proteases and their cognate inhibitors or substrates are analysed and a series of rational inhibitor design principles are expounded and tested. Rational design of protease inhibitors relies on a comprehensive understanding of protease structure and biochemistry. Analysis of known protease cleavage sites in proteins and peptides is a commonly used source of such information. However, model peptide substrate and protein sequences have widely differing levels of backbone constraint and hence can adopt highly divergent structures when binding to a protease’s active site. This may result in identical sequences in peptides and proteins having different conformations and diverse spatial distribution of amino acid functionalities. Regardless of this, protein and peptide cleavage sites are often regarded as being equivalent. One of the key findings in the following studies is a definitive demonstration of the lack of equivalence between these two classes of substrate and invalidation of the common practice of using the sequences of model peptide substrates to predict cleavage of proteins in vivo. Another important feature for protease substrate recognition is subsite cooperativity. This type of cooperativity is commonly referred to as protease or substrate binding subsite cooperativity and is distinct from allosteric cooperativity, where binding of a molecule distant from the protease active site affects the binding affinity of a substrate. Subsite cooperativity may be intramolecular where neighbouring residues in substrates are interacting, affecting the scissile bond’s susceptibility to protease cleavage. Subsite cooperativity can also be intermolecular where a particular residue’s contribution to binding affinity changes depending on the identity of neighbouring amino acids. Although numerous studies have identified subsite cooperativity effects, these findings are frequently ignored in investigations probing subsite selectivity by screening against diverse combinatorial libraries of peptides (positional scanning synthetic combinatorial library; PS-SCL). This strategy for determining cleavage specificity relies on the averaged rates of hydrolysis for an uncharacterised ensemble of peptide sequences, as opposed to the defined rate of hydrolysis of a known specific substrate. Further, since PS-SCL screens probe the preference of the various protease subsites independently, this method is inherently unable to detect subsite cooperativity. However, mean hydrolysis rates from PS-SCL screens are often interpreted as being comparable to those produced by single peptide cleavages. Before this study no large systematic evaluation had been made to determine the level of correlation between protease selectivity as predicted by screening against a library of combinatorial peptides and cleavage of individual peptides. This subject is specifically explored in the studies described here. In order to establish whether PS-SCL screens could accurately determine the substrate preferences of proteases, a systematic comparison of data from PS-SCLs with libraries containing individually synthesised peptides (sparse matrix library; SML) was carried out. These SML libraries were designed to include all possible sequence combinations of the residues that were suggested to be preferred by a protease using the PS-SCL method. SML screening against the three serine proteases kallikrein 4 (KLK4), kallikrein 14 (KLK14) and plasmin revealed highly preferred peptide substrates that could not have been deduced by PS-SCL screening alone. Comparing protease subsite preference profiles from screens of the two types of peptide libraries showed that the most preferred substrates were not detected by PS SCL screening as a consequence of intermolecular cooperativity being negated by the very nature of PS SCL screening. Sequences that are highly favoured as result of intermolecular cooperativity achieve optimal protease subsite occupancy, and thereby interact with very specific determinants of the protease. Identifying these substrate sequences is important since they may be used to produce potent and selective inhibitors of protolytic enzymes. This study found that highly favoured substrate sequences that relied on intermolecular cooperativity allowed for the production of potent inhibitors of KLK4, KLK14 and plasmin. Peptide aldehydes based on preferred plasmin sequences produced high affinity transition state analogue inhibitors for this protease. The most potent of these maintained specificity over plasma kallikrein (known to have a very similar substrate preference to plasmin). Furthermore, the efficiency of this inhibitor in blocking fibrinolysis in vitro was comparable to aprotinin, which previously saw clinical use to reduce perioperative bleeding. One substrate sequence particularly favoured by KLK4 was substituted into the 14 amino acid, circular sunflower trypsin inhibitor (SFTI). This resulted in a highly potent and selective inhibitor (SFTI-FCQR) which attenuated protease activated receptor signalling by KLK4 in vitro. Moreover, SFTI-FCQR and paclitaxel synergistically reduced growth of ovarian cancer cells in vitro, making this inhibitor a lead compound for further therapeutic development. Similar incorporation of a preferred KLK14 amino acid sequence into the SFTI scaffold produced a potent inhibitor for this protease. However, the conformationally constrained SFTI backbone enforced a different intramolecular cooperativity, which masked a KLK14 specific determinant. As a consequence, the level of selectivity achievable was lower than that found for the KLK4 inhibitor. Standard mechanism inhibitors such as SFTI rely on a stable acyl-enzyme intermediate for high affinity binding. This is achieved by a conformationally constrained canonical binding loop that allows for reformation of the scissile peptide bond after cleavage. Amino acid substitutions within the inhibitor to target a particular protease may compromise structural determinants that support the rigidity of the binding loop and thereby prevent the engineered inhibitor reaching its full potential. An in silico analysis was carried out to examine the potential for further improvements to the potency and selectivity of the SFTI-based KLK4 and KLK14 inhibitors. Molecular dynamics simulations suggested that the substitutions within SFTI required to target KLK4 and KLK14 had compromised the intramolecular hydrogen bond network of the inhibitor and caused a concomitant loss of binding loop stability. Furthermore in silico amino acid substitution revealed a consistent correlation between a higher frequency of formation and the number of internal hydrogen bonds of SFTI-variants and lower inhibition constants. These predictions allowed for the production of second generation inhibitors with enhanced binding affinity toward both targets and highlight the importance of considering intramolecular cooperativity effects when engineering proteins or circular peptides to target proteases. The findings from this study show that although PS-SCLs are a useful tool for high throughput screening of approximate protease preference, later refinement by SML screening is needed to reveal optimal subsite occupancy due to cooperativity in substrate recognition. This investigation has also demonstrated the importance of maintaining structural determinants of backbone constraint and conformation when engineering standard mechanism inhibitors for new targets. Combined these results show that backbone conformation and amino acid cooperativity have more prominent roles than previously appreciated in determining substrate/inhibitor specificity and binding affinity. The three key inhibitors designed during this investigation are now being developed as lead compounds for cancer chemotherapy, control of fibrinolysis and cosmeceutical applications. These compounds form the basis of a portfolio of intellectual property which will be further developed in the coming years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a growing number of nations embark on a path to democracy, criminologists have become increasingly interested and engaged in the challenges, concerns, and questions connecting democracy with both crime and criminal justice. Rising levels of violence and street crime, white collar crime and corruption both in countries where democracy is securely in place and where it is struggling, have fuelled a deepening skepticism as to the capacity of democracy to deliver on its promise of security and justice for all citizens. What role does crime and criminal justice play in the future of democracy and for democratic political development on a global level? The editors of this special volume of The Annals realized the importance of collecting research from a broad spectrum of countries and covering a range of problems that affect citizens, politicians, and criminal justice officials. The articles here represent a solid balance between mature democracies like the U.S. and U.K. as well as emerging democracies around the globe – specifically in Latin America, Africa and Eastern Europe. They are based on large and small cross-national samples, regional comparisons, and case studies. Each contribution addresses a seminal question for the future of democratic political development across the globe. What is the role of criminal justice in the process of building democracy and instilling confidence in its institutions? Is there a role for unions in democratizing police forces? What is the impact of widespread disenfranchisement of felons on democratic citizenship and the life of democratic institutions? Under what circumstances do mature democracies adopt punitive sentencing regimes? Addressing sensitive topics such as relations between police and the Muslim communities of Western Europe in the wake of terrorist attacks, this volume also sheds light on the effects of terrorism on mature democracies under increasing pressure to provide security for their citizens. By taking a broad vantage point, this collection of research delves into complex topics such as the relationship between the process of democratization and violent crime waves; the impact of rising crime rates on newly established as well as secure democracies; how crime may endanger the transition to democracy; and how existing practices of criminal justice in mature democracies affect their core values and institutions. The collection of these insightful articles not only begins to fill a gap in criminological research but also addresses issues of critical interest to political scientists as well as other social and behavioral scientists and scholars. Taking a fresh approach to the intersection of crime, criminal justice, and democracy, this volume of The Annals is a must-read for criminologists and political scientists and provides a solid foundation for further interdisciplinary research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this research, we have used vibrational spectroscopy to study the phosphate mineral kosnarite KZr2(PO4)3. Interest in this mineral rests with the ability of zirconium phosphates (ZP) to lock in radioactive elements. ZP have the capacity to concentrate and immobilize the actinide fraction of radioactive phases in homogeneous zirconium phosphate phases. The Raman spectrum of kosnarite is characterized by a very intense band at 1,026 cm−1 assigned to the symmetric stretching vibration of the PO4 3− ν1 symmetric stretching vibration. The series of bands at 561, 595 and 638 cm−1 are assigned to the ν4 out-of-plane bending modes of the PO4 3− units. The intense band at 437 cm−1 with other bands of lower wavenumber at 387, 405 and 421 cm−1 is assigned to the ν2 in-plane bending modes of the PO4 3− units. The number of bands in the antisymmetric stretching region supports the concept that the symmetry of the phosphate anion in the kosnarite structure is preserved. The width of the infrared spectral profile and its complexity in contrast to the well-resolved Raman spectrum show that the pegmatitic phosphates are better studied with Raman spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bulk amount of graphite oxide was prepared by oxidation of graphite using the modified Hummers method and its ultrasonication in organic solvents yielded graphene oxide (GO). X-ray diffraction (XRD) pattern, X-ray photoelectron (XPS), Raman and Fourier transform infrared (FTIR) spectroscopy indicated the successful preparation of GO. XPS survey spectrum of GO revealed the presence of 66.6 at% C and 30.4 at% O. Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) images of the graphene oxide showed that they consist of a large amount of graphene oxide platelets with a curled morphology containing of a thin wrinkled sheet like structure. AFM image of the exfoliated GO signified that the average thickness of GO sheets is ~1.0 nm which is very similar to GO monolayer. GO/epoxy nanocomposites were prepared by typical solution mixing technique and influence of GO on mechanical and thermal properties of nanocomposites were investigated. As for the mechanical behaviour of GO/epoxy nanocomposites, 0.5 wt% GO in the nanocomposite achieved the maximum increase in the elastic modulus (~35%) and tensile strength (~7%). The TEM analysis provided clear image of microstructure with homogeneous dispersion of GO in the polymer matrix. The improved strength properties of GO/epoxy nanocomposites can be attributed to inherent strength of GO, the good dispersion and the strong interfacial interactions between the GO sheets and the polymer matrix. However, incorporation of GO showed significant negative effect on composite glass transition temperature (Tg). This may arise due to the interference of GO on curing reaction of epoxy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Discontinuity between prior-to-school and school sectors in Australia reflects an historical, philosophical and pedagogical schism. This is most evident as children transition from one sector to the other. However, contemporary international research, alongside an intensive focus on policy and practice in early years education has challenged many of the taken-for-granted assumptions that perpetuate this rift. Drawing on data collected in a recent action research project, we present evidence of how a group of primary school kindergarten teachers define differences between orientation and transition programs, understand the importance of transition and how they position themselves in this process. The absence of Australian policy mandating and guiding the work of teachers across sectors is a significant factor perpetuating discontinuity in transition practices between prior–to-school and school sectors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photoelectron spectrum of the oxyallyl (OXA) radical anion has been measured. The radical anion has been generated in the reaction of the atomic oxygen radical anion (O center dot-) with acetone. Three low-lying electronic states of OXA have been observed in the spectrum. Electronic structure calculations have been performed for the triplet states (B-3(2) and B-3(1)) of OXA and the ground doublet state ((2)A(2)) of the radical anion using density, functional theory (DFT). Spectral simulations have been carried out for the triplet statics based on the results of the DFT calculations. The simulation identifies a vibrational progression of the CCC bending mode of the B-3(2) state of OXA in the lower electron binding energy (eBE) portion of the spectrum. On top of the B-3(2) feature, however, the experimental spectrum exhibits additional photoelectron peaks whose angular distribution is distinct from that for the vibronic peaks of the B-3(2) state. Complete active space self-consistent field (CASSCF) method and second-order perturbation theory based on the CASSCF wave function (CASPT2) have been employed to study the lowest singlet state ((1)A(1)) of OXA. The simulation based on the results of these electronic structure calculations establishes that the overlapping peaks represent the vibrational ground level of the (1)A(1) state and its vibrational progression of the CO stretching mode. The A, state is the lowest electronic state of,OXA, and the electron affinity (EA) of OXA is 1.940 +/- 0.010 eV. The B-3(2) state is the first excited state with an electronic term energy of 55 +/- 2 meV. The widths of the vibronic peaks of the (X) over tilde (1)A(1) state are much broader than those of the (a) over tilde B-3(2) state, implying that the (1)A(1) state is indeed a transition state. The CASSCF and CASPT2 calculations suggest that the (1)A(1) state is at a potential maximum along the nuclear coordinate representing disrotatory motion of the two methylene groups, which leads to three-membered-ring formation, i.e., cydopropanone. The simulation of (b) over tilde B-3(1) OXA reproduces the higher eBE portion of the spectrum very well. The term energy of the B-3(1) state is 0.883 +/- 0.012 eV. Photoelectron spectroscopic measurements have also been conducted for the other ion products of the O center dot- reaction with acetone. The photoelectron imaging spectrum of the acetylcarbene (AC) radical anion exhibits a broad, structureless feature, which is assigned to the (X) over tilde (3)A '' state of AC. The ground ((2)A '') and first excited ((2)A') states of the 1-methylvinoxy (1-MVO) radical have been observed in the photoelectron spectrum of the 1-MVO ion, and their vibronic structure has been analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T′′), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T′′ MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T′′ phase unambiguously display similar band topologies and strain controlled topological phase transitions. Our findings greatly enrich the 2D families of transition metal dichalcogenides and offer a feasible way to control the electronic states of 2D topological insulators for the fabrication of high-speed spintronics devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-dimensional (2D) transition metal oxide systems present exotic electronic properties and high specific surface areas, and also demonstrate promising applications ranging from electronics to energy storage. Yet, in contrast to other types of nanostructures, the question as to whether we could assemble 2D nanomaterials with an atomic thickness from molecules in a general way, which may give them some interesting properties such as those of graphene, still remains unresolved. Herein, we report a generalized and fundamental approach to molecular self-assembly synthesis of ultrathin 2D nanosheets of transition metal oxides by rationally employing lamellar reverse micelles. It is worth emphasizing that the synthesized crystallized ultrathin transition metal oxide nanosheets possess confined thickness, high specific surface area and chemically reactive facets, so that they could have promising applications in nanostructured electronics, photonics, sensors, and energy conversion and storage devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Raman spectrum of holmquistite, a Li-containing orthorhombic amphibole from Bessemer City, USA has been measured. The OH-stretching region is characterized by bands at 3661, 3646, 3634 and 3614 cm–1 assigned to 3 Mg–OH, 2 Mg + Fe2+–OH, Mg + 2Fe2+–OH and 3 Fe2+–OH, respectively. These Mg and Fe2+ cations are located at the M1 and M3 sites and have a Fe2+/(Fe2+ + Mg) ratio of 0.35. The 960–1110 cm–1 region represents the antisymmetric Si–O–Si and O–Si–O stretching vibrations. For holmquistite, strong bands are observed around 1022 and 1085 cm–1 with a shoulder at 1127 cm–1 and minor bands at 1045 and 1102 cm–1. In the region 650–800 cm–1 bands are observed at 679, 753 and 791 cm–1 with a minor band around 694 cm–1 attributed to the symmetrical Si–O–Si and Si–O vibrations. The region below 625 cm–1 is characterized by 14 vibrations related to the deformation modes of the silicate double chain and vibrations involving Mg, Fe, Al and Li in the various M sites. The 502 cm–1 band is a Li–O deformation mode while the 456, 551 and 565 cm–1 bands are Al–O deformation modes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a space fractional di®usion equation (SFDE) with non- homogeneous boundary conditions on a bounded domain is considered. A new matrix transfer technique (MTT) for solving the SFDE is proposed. The method is based on a matrix representation of the fractional-in-space operator and the novelty of this approach is that a standard discretisation of the operator leads to a system of linear ODEs with the matrix raised to the same fractional power. Analytic solutions of the SFDE are derived. Finally, some numerical results are given to demonstrate that the MTT is a computationally e±cient and accurate method for solving SFDE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis reports the outcomes of an investigation into students’ experience of Problem-based learning (PBL) in virtual space. PBL is increasingly being used in many fields including engineering education. At the same time many engineering education providers are turning to online distance education. Unfortunately there is a dearth of research into what constitutes an effective learning experience for adult learners who undertake PBL instruction through online distance education. Research was therefore focussed on discovering the qualitatively different ways that students experience PBL in virtual space. Data was collected in an electronic environment from a course, which adopted the PBL strategy and was delivered entirely in virtual space. Students in this course were asked to respond to open-ended questions designed to elicit their learning experience in the course. Data was analysed using the phenomenographical approach. This interpretative research method concentrated on mapping the qualitative differences in students’ interpretations of their experience in the course. Five qualitatively different ways of experiencing were discovered: Conception 1: ‘A necessary evil for program progression’; Conception 2: ‘Developing skills to understand, evaluate, and solve technical Engineering and Surveying problems’; Conception 3: ‘Developing skills to work effectively in teams in virtual space’; Conception 4: ‘A unique approach to learning how to learn’; Conception 5: ‘Enhancing personal growth’. Each conception reveals variation in how students attend to learning by PBL in virtual space. Results indicate that the design of students’ online learning experience was responsible for making students aware of deeper ways of experiencing PBL in virtual space. Results also suggest that the quality and quantity of interaction with the team facilitator may have a significant impact on the student experience in virtual PBL courses. The outcomes imply pedagogical strategies can be devised for shifting students’ focus as they engage in the virtual PBL experience to effectively manage the student learning experience and thereby ensure that they gain maximum benefit. The results from this research hold important ramifications for graduates with respect to their ease of transition into professional work as well as their later professional competence in terms of problem solving, ability to transfer basic knowledge to real-life engineering scenarios, ability to adapt to changes and apply knowledge in unusual situations, ability to think critically and creatively, and a commitment to continuous life-long learning and self-improvement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnesium minerals are important in the understanding of the concept of geosequestration. The two hydrated hydroxy magnesium carbonate minerals artinite and dypingite have been studied by Raman spectroscopy. Intense bands are observed at 1092 cm-1 for artinite and at 1120 cm-1 for dypingite attributed CO32- ν1 symmetric stretching mode. The CO32- ν3 antisymmetric stretching vibrations are extremely weak and are observed at1412 and 1465 cm-1 for artinite and at 1366, 1447 and 1524 cm-1 for dypingite. Very weak Raman bands at 790 cm-1 for artinite and 800 cm-1 for dypingite are assigned to the CO32- ν2 out-of-plane bend. The Raman band at 700 cm-1 of artinite and at 725 and 760 cm-1 of dypingite are ascribed to CO32- ν2 in-plane bending mode. The Raman spectrum of artinite in the OH stretching region is characterised by two sets of bands: (a) an intense band at 3593 cm-1 assigned to the MgOH stretching vibrations and (b) the broad profile of overlapping bands at 3030 and 3229 cm-1 attributed to water stretching vibrations. X-ray diffraction studies show the minerals are disordered. This is reflected in the difficulty of obtaining Raman spectra of reasonable quality and explains why the Raman spectra of these minerals have not been previously or sufficiently described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The healing process for bone fractures is sensitive to mechanical stability and blood supply at the fracture site. Most currently available mechanobiological algorithms of bone healing are based solely on mechanical stimuli, while the explicit analysis of revascularization and its influences on the healing process have not been thoroughly investigated in the literature. In this paper, revascularization was described by two separate processes: angiogenesis and nutrition supply. The mathematical models for angiogenesis and nutrition supply have been proposed and integrated into an existing fuzzy algorithm of fracture healing. The computational algorithm of fracture healing, consisting of stress analysis, analyses of angiogenesis and nutrient supply, and tissue differentiation, has been tested on and compared with animal experimental results published previously. The simulation results showed that, for a small and medium-sized fracture gap, the nutrient supply is sufficient for bone healing, for a large fracture gap, non-union may be induced either by deficient nutrient supply or inadequate mechanical conditions. The comparisons with experimental results demonstrated that the improved computational algorithm is able to simulate a broad spectrum of fracture healing cases and to predict and explain delayed unions and non-union induced by large gap sizes and different mechanical conditions. The new algorithm will allow the simulation of more realistic clinical fracture healing cases with various fracture gaps and geometries and may be helpful to optimise implants and methods for fracture fixation.