96 resultados para phosphorylated proteins


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We hypothesised that a potentially disease-modifying osteoarthritis (OA) drug such as hyaluronic acid (HA) given in combination with anti-inflammatory signalling agents such as mitogen-activated protein kinase kinase–extracellular signal-regulated kinase (MEK-ERK) signalling inhibitor (U0126) could result in additive or synergistic effects on preventing the degeneration of articular cartilage. Chondrocyte differentiation and hypertrophy were evaluated using human OA primary cells treated with either HA or U0126, or the combination of HA + U0126. Cartilage degeneration in menisectomy (MSX) induced rat OA model was investigated by intra-articular delivery of either HA or U0126, or the combination of HA + U0126. Histology, immunostaining, RT-qPCR, Western blotting and zymography were performed to assess the expression of cartilage matrix proteins and hypertrophic markers. Phosphorylated ERK (pERK)1/2-positive chondrocytes were significantly higher in OA samples compared with those in healthy control suggesting the pathological role of that pathway in OA. It was noted that HA + U0126 significantly reduced the levels of pERK, chondrocyte hypertrophic markers (COL10 and RUNX2) and degenerative markers (ADAMTs5 and MMP-13), however, increased the levels of chondrogenic markers (COL2) compared to untreated or the application of HA or U0126 alone. In agreement with the results in vitro, intra-articular delivery of HA + U0126 showed significant therapeutic improvement of cartilage in rat MSX OA model compared with untreated or the application of HA or U0126 alone. Our study suggests that the combination of HA and MEK-ERK inhibition has a synergistic effect on preventing cartilage degeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Demineralized freeze-dried bone allografts (DFDBAs) have been proposed as a useful adjunct in periodontal therapy to induce periodontal regeneration through the induction of new bone formation. The presence of bone morphogenetic proteins (BMPs) within the demineralized matrix has been proposed as a possible mechanism through which DFDBA may exert its biologic effect. However, in recent years, the predictability of results using DFDBA has been variable and has led to its use being questioned. One reason for the variability in tissue response may be attributed to differences in the processing of DFDBA, which may lead to loss of activity of any bioactive substances within the DFDBA matrix. Therefore, the purpose of this investigation was to determine whether there are detectable levels of bone morphogenetic proteins in commercial DFDBA preparations. METHODS: A single preparation of DFDBA was obtained from three commercial sources. Each preparation was studied in triplicate. Proteins within the DFDBA samples were first extracted with 4M guanidinium HCI for seven days at 40 degrees celsius and the residue was further extracted with 4M guanidinium HCL/EDTA for seven days at 40 degrees celsius. Two anti-human BMP-2 and -4 antibodies were used for the detection of the presence of BMP's in the extracts. RESULTS: Neither BMP-2 nor BMP-4 was detected in any of the extracts. When recombinant human BMP-2 and -4 were added throughout the extraction process of DFDBA extraction, not only were intact proteins detected but smaller molecular weight fragments were also noted in the extract. CONCLUSIONS: These results indicate that all of the DFDBA samples tested had no detectable amounts of BMP-2 and -4. In addition, an unknown substance present in the DFDBA may be responsible for degradation of whatever BMPs might be present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: This study investigated the association between the basal (rest) insulin-signaling proteins, Akt, and the Akt substrate AS160, metabolic risk factors, inflammatory markers and aerobic fitness, in middle-aged women with varying numbers of metabolic risk factors for type 2 diabetes. Methods: Sixteen women (n = 16) aged 51.3+/-5.1 (mean +/-SD) years provided muscle biopsies and blood samples at rest. In addition, anthropometric characteristics and aerobic power were assessed and the number of metabolic risk factors for each participant was determined (IDF criteria). Results: The mean number of metabolic risk factors was 1.6+/-1.2. Total Akt was negatively correlated with IL-1 beta (r = -0.45, p = 0.046), IL-6 (r = -0.44, p = 0.052) and TNF-alpha (r = -0.51, p = 0.025). Phosphorylated AS160 was positively correlated with HDL (r = 0.58, p = 0.024) and aerobic fitness (r = 0.51, p = 0.047). Furthermore, a multiple regression analysis revealed that both HDL (t = 2.5, p = 0.032) and VO(2peak) (t = 2.4, p = 0.037) were better predictors for phosphorylated AS160 than TNF-alpha or IL-6 (p>0.05). Conclusions: Elevated inflammatory markers and increased metabolic risk factors may inhibit insulin-signaling protein phosphorylation in middle-aged women, thereby increasing insulin resistance under basal conditions. Furthermore, higher HDL and fitness levels are associated with an increased AS160 phosphorylation, which may in turn reduce insulin resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dicistronic Drosophila stoned gene is involved in exocytosis and/or endocytosis of synaptic vesicles. Mutations in either stonedA or stonedB cause a severe disruption of neurotransmission in fruit flies. Previous studies have shown that the coiled-coil domain of the Stoned-A and the µ-homology domain of the Stoned-B protein can interact with the C2B domain of Synaptotagmin-1. However, very little is known about the mechanism of interaction between the Stoned proteins and the C2B domain of Synaptotagmin-1. Here we report that these interactions are increased in the presence of Ca(2+). The Ca(2+)-dependent interaction between the µ-homology domain of Stoned-B and C2B domain of Synaptotagmin-1 is affected by phospholipids. The C-terminal region of the C2B domain, including the tryptophan-containing motif, and the Ca(2+) binding loop region that modulate the Ca(2+)-dependent oligomerization, regulates the binding of the Stoned-A and Stoned-B proteins to the C2B domain. Stoned-B, but not Stoned-A, interacts with the Ca(2+)-binding loop region of C2B domain. The results indicate that Ca(2+)-induced self-association of the C2B domain regulates the binding of both Stoned-A and Stoned-B proteins to Synaptotagmin-1. The Stoned proteins may regulate sustainable neurotransmission in vivo by binding to Ca(2+)-bound Synaptotagmin-1 associated synaptic vesicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lack of fundamental knowledge on the biological processes associated with wound healing represents a significant challenge. Understanding the biochemical changes that occur within a chronic wound could provide insights into the wound environment and enable more effective wound management. We report on the stability of wound fluid samples under various conditions and describe a high-throughput approach to investigate the altered biochemical state within wound samples collected from various types of chronic, ulcerated wounds. Furthermore, we discuss the viability of this approach in the early stages of wound sample protein and metabolite profiling and subsequent biomarker discovery. This approach will facilitate the detection of factors that may correlate with wound severity and/or could be used to monitor the response to a particular treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of vaccine strategies against human papillomavirus (HPV), which causes cervical cancer, is a priority. We investigated the use of virus-like particles (VLPs) of the most prevalent type, HPV-16, as carriers of foreign proteins. Green fluorescent protein (GFP) was fused to the N or C terminus of both L1 and L2, with L2 chimeras being co-expressed with native L1. Purified chimaeric VLPs were comparable in size (∼55 nm) to native HPV VLPs. Conformation-specific monoclonal antibodies (Mabs) bound to the VLPs, thereby indicating that they possibly retain their antigenicity. In addition, all of the VLPs encapsidated DNA in the range of 6-8 kb. © 2007 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dermo-epidermal interface that connects the equine distal phalanx to the cornified hoof wall withstands great biomechanical demands, but is also a region where structural failure often ensues as a result of laminitis. The cytoskeleton in this region maintains cell structure and facilitates intercellular adhesion, making it likely to be involved in laminitis pathogenesis, although it is poorly characterized in the equine hoof lamellae. The objective of the present study was to identify and quantify the cytoskeletal proteins present in the epidermal and dermal lamellae of the equine hoof by proteomic techniques. Protein was extracted from the mid-dorsal epidermal and dermal lamellae from the front feet of 5 Standardbred geldings and 1 Thoroughbred stallion. Mass spectrometry-based spectral counting techniques, PAGE, and immunoblotting were used to identify and quantify cytoskeletal proteins, and indirect immunofluorescence was used for cellular localization of K14 and K124 (where K refers to keratin). Proteins identified by spectral counting analysis included 3 actin microfilament proteins; 30 keratin proteins along with vimentin, desmin, peripherin, internexin, and 2 lamin intermediate filament proteins; and 6 tubulin microtubule proteins. Two novel keratins, K42 and K124, were identified as the most abundant cytoskeletal proteins (22.0 ± 3.2% and 23.3 ± 4.2% of cytoskeletal proteins, respectively) in equine hoof lamellae. Immunoreactivity to K14 was localized to the basal cell layer, and that to K124 was localized to basal and suprabasal cells in the secondary epidermal lamellae. Abundant proteins K124, K42, K14, K5, and α1-actin were identified on 1- and 2-dimensional polyacrylamide gels and aligned with the results of previous studies. Results of the present study provide the first comprehensive analysis of cytoskeletal proteins present in the equine lamellae by using mass spectrometry-based techniques for protein quantification and identification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The double-stranded conformation of cellular DNA is a central aspect of DNA stabilisation and protection. The helix preserves the genetic code against chemical and enzymatic degradation, metabolic activation, and formation of secondary structures. However, there are various instances where single-stranded DNA is exposed, such as during replication or transcription, in the synthesis of chromosome ends, and following DNA damage. In these instances, single-stranded DNA binding proteins are essential for the sequestration and processing of single-stranded DNA. In order to bind single-stranded DNA, these proteins utilise a characteristic and evolutionary conserved single-stranded DNA-binding domain, the oligonucleotide/oligosaccharide-binding (OB)-fold. In the current review we discuss a subset of these proteins involved in the direct maintenance of genomic stability, an important cellular process in the conservation of cellular viability and prevention of malignant transformation. We discuss the central roles of single-stranded DNA binding proteins from the OB-fold domain family in DNA replication, the restart of stalled replication forks, DNA damage repair, cell cycle-checkpoint activation, and telomere maintenance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Although rapid diagnostic tests (RDTs) for Plasmodium falciparum infection that target histidine rich protein 2 (PfHRP2) are generally sensitive, their performance has been reported to be variable. One possible explanation for variable test performance is differences in expression level of PfHRP in different parasite isolates. Methods: Total RNA and protein were extracted from synchronised cultures of 7 P. falciparum lines over 5 time points of the life cycle, and from synchronised ring stages of 10 falciparum lines. Using quantitative real-time polymerase chain reaction, Western blot analysis and ELISA we investigated variations in the transcription and protein levels of pfhrp2, pfhrp3 and PfHRP respectively in the different parasite lines, over the parasite intraerythrocytic life cycle. Results: Transcription of pfhrp2 and pfhrp3 in different parasite lines over the parasite life cycle was observed to vary relative to the control parasite K1. In some parasite lines very low transcription of these genes was observed. The peak transcription was observed in ring-stage parasites. Pfhrp2 transcription was observed to be consistently higher than pfhrp3 transcription within parasite lines. The intraerythrocytic lifecycle stage at which the peak level of protein was present varied across strains. Total protein levels were more constant relative to total mRNA transcription, however a maximum 24 fold difference in expression at ring-stage parasites relative to the K1 strain was observed. Conclusions: The levels of transcription of pfhrp2 and pfhrp3, and protein expression of PfHRP varied between different P. falciparum strains. This variation may impact on the detection sensitivity of PfHRP2-detecting RDTs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early detection, clinical management and disease recurrence monitoring are critical areas in cancer treatment in which specific biomarker panels are likely to be very important in each of these key areas. We have previously demonstrated that levels of alpha-2-heremans-schmid-glycoprotein (AHSG), complement component C3 (C3), clusterin (CLI), haptoglobin (HP) and serum amyloid A (SAA) are significantly altered in serum from patients with squamous cell carcinoma of the lung. Here, we report the abundance levels for these proteins in serum samples from patients with advanced breast cancer, colorectal cancer (CRC) and lung cancer compared to healthy controls (age and gender matched) using commercially available enzyme-linked immunosorbent assay kits. Logistic regression (LR) models were fitted to the resulting data, and the classification ability of the proteins was evaluated using receiver-operating characteristic curve and leave-one-out cross-validation (LOOCV). The most accurate individual candidate biomarkers were C3 for breast cancer [area under the curve (AUC) = 0.89, LOOCV = 73%], CLI for CRC (AUC = 0.98, LOOCV = 90%), HP for small cell lung carcinoma (AUC = 0.97, LOOCV = 88%), C3 for lung adenocarcinoma (AUC = 0.94, LOOCV = 89%) and HP for squamous cell carcinoma of the lung (AUC = 0.94, LOOCV = 87%). The best dual combination of biomarkers using LR analysis were found to be AHSG + C3 (AUC = 0.91, LOOCV = 83%) for breast cancer, CLI + HP (AUC = 0.98, LOOCV = 92%) for CRC, C3 + SAA (AUC = 0.97, LOOCV = 91%) for small cell lung carcinoma and HP + SAA for both adenocarcinoma (AUC = 0.98, LOOCV = 96%) and squamous cell carcinoma of the lung (AUC = 0.98, LOOCV = 84%). The high AUC values reported here indicated that these candidate biomarkers have the potential to discriminate accurately between control and cancer groups both individually and in combination with other proteins. Copyright © 2011 UICC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumour angiogenesis has been recently recognised as one of the most important prognostic factors in lung cancer. Although a variety of angiogenic factors have been identified, the angiogenesis process remains poorly understood. Bcl-2, c-erbB-2 and p53 are well-known oncogenes involved in non- small-cell lung cancer pathogenesis. A direct correlation of thymidine phosphorylase (TP) and of vascular endothelial growth factor (VEGF) with intratumoural angiogenesis has been reported. In the present study we investigated the possible regulatory role if bcl-2, c-erB-2 proteins in angiogenesis and in VEGF and TP expression in non-small-cell lung cancer. Two hundred sixteen specimens from T1,2-NO, 1 staged patients treated with surgery alone were immunohistochemically examined. Bcl-2 and c-erbB-2 were significantly inversely related to each other (P = 0.04) and both were inversely associated with microvessel density (P < 0.02). High TP and VEGF reactivity was statistically related to loss of bcl-2 expression (P < 0.01). A significant co-expression of c-erbB-2 with TP was noted (P = 0.01). However, TP expression was related to high angiogenesis only in cases with absence of c-erB-2 expression (P < 0.0001). c-erbB-2 expression in poorly vascularised tumours was linked with poor outcome (P = 0.03). The present study provides strong evidence that the bcl-2 gene has a suppressive function over genes involved in both angiogenesis (VEGF and TP) and cell migration (c- erbB-2) in NSCLC. TP and c-erbB-2 proteins are significantly, and often simultaneously, expressed in bcl-2 negative cases. However, expression of the c-erbB-2 abolishes the TP-related angiogenic activity. Whether this is a result of a direct activity of the c-erbB-2 protein or a consequence of a c- erbB-2-related immune response remains to be further investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As proteins within cells are spatially organized according to their role, knowledge about protein localization gives insight into protein function. Here, we describe the LOPIT technique (localization of organelle proteins by isotope tagging) developed for the simultaneous and confident determination of the steady-state distribution of hundreds of integral membrane proteins within organelles. The technique uses a partial membrane fractionation strategy in conjunction with quantitative proteomics. Localization of proteins is achieved by measuring their distribution pattern across the density gradient using amine-reactive isotope tagging and comparing these patterns with those of known organelle residents. LOPIT relies on the assumption that proteins belonging to the same organelle will co-fractionate. Multivariate statistical tools are then used to group proteins according to the similarities in their distributions, and hence localization without complete centrifugal separation is achieved. The protocol requires approximately 3 weeks to complete and can be applied in a high-throughput manner to material from many varied sources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In eukaryotes, numerous complex sub-cellular structures exist. The majority of these are delineated by membranes. Many proteins are trafficked to these in order to be able to carry out their correct physiological function. Assigning the sub-cellular location of a protein is of paramount importance to biologists in the elucidation of its role and in the refinement of knowledge of cellular processes by tracing certain activities to specific organelles. Membrane proteins are a key set of proteins as these form part of the boundary of the organelles and represent many important functions such as transporters, receptors, and trafficking. They are, however, some of the most challenging proteins to work with due to poor solubility, a wide concentration range within the cell and inaccessibility to many of the tools employed in proteomics studies. This review focuses on membrane proteins with particular emphasis on sub-cellular localization in terms of methodologies that can be used to determine the accurate location of membrane proteins to organelles. We also discuss what is known about the membrane protein cohorts of major organelles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Akt, a Serine/Threonine protein kinase, mediates growth factor-associated cell survival. Constitutive activation of Akt (phosphorylated Akt, P-Akt) has been observed in several human cancers, including lung cancer and may be associated with poor prognosis and chemotherapy and radiotherapy resistance. The clinical relevance of P-Akt in non-small cell lung cancer (NSCLC) is not well described. In the present study, we examined 82 surgically resected snap-frozen and paraffin-embedded stage I to IIIA NSCLC samples for P-Akt and Akt by Western blotting and for P-Akt by immunohistochemistry. P-Akt protein levels above the median, measured using reproducible semiquantitative band densitometry, correlated with a favorable outcome (P = 0.007). Multivariate analysis identified P-Akt as a significant independent favorable prognostic factor (P = 0.004). Although associated with a favorable prognosis, high P-Akt levels correlated with high tumor grade (P = 0.02). Adenocarcinomas were associated with low P-Akt levels (P = 0.039). Akt was not associated with either outcome or clinicopathologic variables. Cytoplasmic (CP-Akt) and nuclear (NP-Akt) P-Akt tumor cell staining was detected in 96% and 42% of cases, respectively. Both CP-Akt and NP-Akt correlated with well-differentiated tumors (P = 0.008 and 0.017, respectively). NP-Akt also correlated with nodal metastases (P = 0.022) and squamous histology (P = 0.037). These results suggest P-Akt expression is a favorable prognostic factor in NSCLC. Immunolocalization of P-Akt, however, may be relevant as NP-Akt was associated with nodal metastases, a known poor prognostic feature in this disease. P-Akt may be a potential novel therapeutic target for the management of NSCLC. © 2005 American Association for Cancer Research.