219 resultados para model reference adaptive control systems
Resumo:
The Marine Systems Simulator (MSS) is an environment which provides the necessary resources for rapid implementation of mathematical models of marine systems with focus on control system design. The simulator targets models¡Xand provides examples ready to simulate¡Xof different floating structures and its systems performing various operations. The platform adopted for the development of MSS is Matlab/Simulink. This allows a modular simulator structure, and the possibility of distributed development. Openness and modularity of software components have been the prioritized design principles, which enables a systematic reuse of knowledge and results in efficient tools for research and education. This paper provides an overview of the structure of the MSS, its features, current accessability, and plans for future development.
Resumo:
As Unmanned Aircraft Systems (UAS) grow in complexity, and their level of autonomy increases|moving away from the concept of a remotely piloted systems and more towards autonomous systems|there is a need to further improve reliability and tolerance to faults. The traditional way to accommodate actuator faults is by using standard control allocation techniques as part of the flight control system. The allocation problem in the presence of faults often requires adding constraints that quantify the maximum capacity of the actuators. This in turn requires on-line numerical optimisation. In this paper, we propose a framework for joint allocation and constrained control scheme via vector input scaling. The actuator configuration is used to map actuator constraints into the space of the aircraft generalised forces, which are the magnitudes demanded by the light controller. Then by constraining the output of controller, we ensure that the allocation function always receive feasible demands. With the proposed framework, the allocation problem does not require numerical optimisation, and since the controller handles the constraints, there is not need to implement heuristics to inform the controller about actuator saturation.
Resumo:
For timely processing of the crop, sugar factories need boiler stations that can reliably produce steam when fired with fuel of variable quality. The control systems installed on most sugar factory boilers have changed little in the last thirty years and in some cases the default control system response to changes in fuel and/or fuel quality is not correct and operator intervention is required to prevent factory stoppages or reductions in crushing rate caused by poor combustion. Some factories have recently modified their boiler control systems for improved combustion performance and reduced maintenance costs. This paper describes testing carried out to evaluate some of these control system modifications and identifies boiler control system changes that can be applied more widely in the sugar industry.
Resumo:
Building information models have created a paradigm shift in how buildings are built and managed by providing a dynamic repository for building data that is useful in many new operational scenarios. This change has also created an opportunity to use building information models as an integral part of security operations and especially as a tool to facilitate fine-grained access control to building spaces in smart buildings and critical infrastructure environments. In this paper, we identify the requirements for a security policy model for such an access control system and discuss why the existing policy models are not suitable for this application. We propose a new policy language extension to XACML, with BIM specific data types and functions based on the IFC specification, which we call BIM-XACML.
Resumo:
The DeLone and McLean (D&M) model (2003) has been broadly used and generally recognised as a useful model for gauging the success of IS implementations. However, it is not without limitations. In this study, we evaluate a model that extends the D&M model and attempts to address some of it slimitations by providing a more complete measurement model of systems success. To that end, we augment the D&M (2003) model and include three variables: business value, institutional trust, and future readiness. We propose that the addition of these variables allows systems success to be assessed at both the systems level and the business level. Consequently, we develop a measurement model rather than a structural or predictive model of systems success.
Resumo:
Ecological dynamics characterizes adaptive behavior as an emergent, self-organizing property of interpersonal interactions in complex social systems. The authors conceptualize and investigate constraints on dynamics of decisions and actions in the multiagent system of team sports. They studied coadaptive interpersonal dynamics in rugby union to model potential control parameter and collective variable relations in attacker–defender dyads. A videogrammetry analysis revealed how some agents generated fluctuations by adapting displacement velocity to create phase transitions and destabilize dyadic subsystems near the try line. Agent interpersonal dynamics exhibited characteristics of chaotic attractors and informational constraints of rugby union boxed dyadic systems into a low dimensional attractor. Data suggests that decisions and actions of agents in sports teams may be characterized as emergent, self-organizing properties, governed by laws of dynamical systems at the ecological scale. Further research needs to generalize this conceptual model of adaptive behavior in performance to other multiagent populations.
Resumo:
This paper considers the question of designing a fully image based visual servo control for a dynamic system. The work is motivated by the ongoing development of image based visual servo control of small aerial robotic vehicles. The observed targets considered are coloured blobs on a flat surface to which the normal direction is known. The theoretical framework is directly applicable to the case of markings on a horizontal floor or landing field. The image features used are a first order spherical moment for position and an image flow measurement for velocity. A fully non-linear adaptive control design is provided that ensures global stability of the closed-loop system. © 2005 IEEE.
Resumo:
A novel gray-box neural network model (GBNNM), including multi-layer perception (MLP) neural network (NN) and integrators, is proposed for a model identification and fault estimation (MIFE) scheme. With the GBNNM, both the nonlinearity and dynamics of a class of nonlinear dynamic systems can be approximated. Unlike previous NN-based model identification methods, the GBNNM directly inherits system dynamics and separately models system nonlinearities. This model corresponds well with the object system and is easy to build. The GBNNM is embedded online as a normal model reference to obtain the quantitative residual between the object system output and the GBNNM output. This residual can accurately indicate the fault offset value, so it is suitable for differing fault severities. To further estimate the fault parameters (FPs), an improved extended state observer (ESO) using the same NNs (IESONN) from the GBNNM is proposed to avoid requiring the knowledge of ESO nonlinearity. Then, the proposed MIFE scheme is applied for reaction wheels (RW) in a satellite attitude control system (SACS). The scheme using the GBNNM is compared with other NNs in the same fault scenario, and several partial loss of effect (LOE) faults with different severities are considered to validate the effectiveness of the FP estimation and its superiority.
Resumo:
Purpose – The purpose of this paper is to describe an innovative compliance control architecture for hybrid multi‐legged robots. The approach was verified on the hybrid legged‐wheeled robot ASGUARD, which was inspired by quadruped animals. The adaptive compliance controller allows the system to cope with a variety of stairs, very rough terrain, and is also able to move with high velocity on flat ground without changing the control parameters. Design/methodology/approach – The paper shows how this adaptivity results in a versatile controller for hybrid legged‐wheeled robots. For the locomotion control we use an adaptive model of motion pattern generators. The control approach takes into account the proprioceptive information of the torques, which are applied on the legs. The controller itself is embedded on a FPGA‐based, custom designed motor control board. An additional proprioceptive inclination feedback is used to make the same controller more robust in terms of stair‐climbing capabilities. Findings – The robot is well suited for disaster mitigation as well as for urban search and rescue missions, where it is often necessary to place sensors or cameras into dangerous or inaccessible areas to get a better situation awareness for the rescue personnel, before they enter a possibly dangerous area. A rugged, waterproof and dust‐proof corpus and the ability to swim are additional features of the robot. Originality/value – Contrary to existing approaches, a pre‐defined walking pattern for stair‐climbing was not used, but an adaptive approach based only on internal sensor information. In contrast to many other walking pattern based robots, the direct proprioceptive feedback was used in order to modify the internal control loop, thus adapting the compliance of each leg on‐line.
Resumo:
In this paper, the trajectory tracking control of an autonomous underwater vehicle (AUVs) in six-degrees-of-freedom (6-DOFs) is addressed. It is assumed that the system parameters are unknown and the vehicle is underactuated. An adaptive controller is proposed, based on Lyapunov׳s direct method and the back-stepping technique, which interestingly guarantees robustness against parameter uncertainties. The desired trajectory can be any sufficiently smooth bounded curve parameterized by time even if consist of straight line. In contrast with the majority of research in this field, the likelihood of actuators׳ saturation is considered and another adaptive controller is designed to overcome this problem, in which control signals are bounded using saturation functions. The nonlinear adaptive control scheme yields asymptotic convergence of the vehicle to the reference trajectory, in the presence of parametric uncertainties. The stability of the presented control laws is proved in the sense of Lyapunov theory and Barbalat׳s lemma. Efficiency of presented controller using saturation functions is verified through comparing numerical simulations of both controllers.
Resumo:
This paper proposes a new approach for delay-dependent robust H-infinity stability analysis and control synthesis of uncertain systems with time-varying delay. The key features of the approach include the introduction of a new Lyapunov–Krasovskii functional, the construction of an augmented matrix with uncorrelated terms, and the employment of a tighter bounding technique. As a result, significant performance improvement is achieved in system analysis and synthesis without using either free weighting matrices or model transformation. Examples are given to demonstrate the effectiveness of the proposed approach.
Resumo:
Although previous work in nonlinear dynamics on neurobiological coordination and control has provided valuable insights from studies of single joint movements in humans, researchers have shown increasing interest in coordination of multi-articular actions. Multi-articular movement models have provided valuable insights on neurobiological systems conceptualised as degenerate, adaptive complex systems satisfying the constraints of dynamic environments. In this paper, we overview empirical evidence illustrating the dynamics of adaptive movement behavior in a range of multi-articular actions including kicking, throwing, hitting and balancing. We model the emergence of creativity and the diversity of neurobiological action in the meta-stable region of self organising criticality. We examine the influence on multi-articular actions of decaying and emerging constraints in the context of skill acquisition. We demonstrate how, in this context, transitions between preferred movement patterns exemplify the search for and adaptation of attractor states within the perceptual motor workspace as a function of practice. We conclude by showing how empirical analyses of neurobiological coordination and control have been used to establish a nonlinear pedagogical framework for enhancing acquisition of multi-articular actions.
Resumo:
This paper investigates the robust H∞ control for Takagi-Sugeno (T-S) fuzzy systems with interval time-varying delay. By employing a new and tighter integral inequality and constructing an appropriate type of Lyapunov functional, delay-dependent stability criteria are derived for the control problem. Because neither any model transformation nor free weighting matrices are employed in our theoretical derivation, the developed stability criteria significantly improve and simplify the existing stability conditions. Also, the maximum allowable upper delay bound and controller feedback gains can be obtained simultaneously from the developed approach by solving a constrained convex optimization problem. Numerical examples are given to demonstrate the effectiveness of the proposed methods.
Resumo:
A pragmatic method for assessing the accuracy and precision of a given processing pipeline required for converting computed tomography (CT) image data of bones into representative three dimensional (3D) models of bone shapes is proposed. The method is based on coprocessing a control object with known geometry which enables the assessment of the quality of resulting 3D models. At three stages of the conversion process, distance measurements were obtained and statistically evaluated. For this study, 31 CT datasets were processed. The final 3D model of the control object contained an average deviation from reference values of −1.07±0.52 mm standard deviation (SD) for edge distances and −0.647±0.43 mm SD for parallel side distances of the control object. Coprocessing a reference object enables the assessment of the accuracy and precision of a given processing pipeline for creating CTbased 3D bone models and is suitable for detecting most systematic or human errors when processing a CT-scan. Typical errors have about the same size as the scan resolution.
Resumo:
Design teams are confronted with the quandary of choosing apposite building control systems to suit the needs of particular intelligent building projects, due to the availability of innumerable ‘intelligent’ building products and a dearth of inclusive evaluation tools. This paper is organised to develop a model for facilitating the selection evaluation for intelligent HVAC control systems for commercial intelligent buildings. To achieve these objectives, systematic research activities have been conducted to first develop, test and refine the general conceptual model using consecutive surveys; then, to convert the developed conceptual framework into a practical model; and, finally, to evaluate the effectiveness of the model by means of expert validation. The results of the surveys are that ‘total energy use’ is perceived as the top selection criterion, followed by the‘system reliability and stability’, ‘operating and maintenance costs’, and ‘control of indoor humidity and temperature’. This research not only presents a systematic and structured approach to evaluate candidate intelligent HVAC control system against the critical selection criteria (CSC), but it also suggests a benchmark for the selection of one control system candidate against another.