196 resultados para fishery and biology of the mackerel


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: The Nurse Researcher Project (NRP) was initiated to support development of a nursing research and evidence based practice culture in Cancer Care Services (CCS) in a large tertiary hospital in Australia. The position was established and evaluated to inform future directions in the organisation.---------- Background: The demand for quality cancer care has been expanding over the past decades. Nurses are well placed to make an impact on improving health outcomes of people affected by cancer. At the same time, there is a robust body of literature documenting the barriers to undertaking and utilising research by and for nurses and nursing. A number of strategies have been implemented to address these barriers including a range of staff researcher positions but there is scant attention to evaluating the outcomes of these strategies. The role of nurse researcher has been documented in the literature with the aim to provide support to nurses in the clinical setting. There is, to date, little information in relation to the design, implementation and evaluation of this role.---------- Design: The Donabedian’s model of program evaluation was used to implement and evaluate this initiative.---------- Methods: The ‘NRP’ outlined the steps needed to implement the nurse researcher role in a clinical setting. The steps involved the design of the role, planning for the support system for the role, and evaluation of outcomes of the role over two years.---------- Discussion: This paper proposes an innovative and feasible model to support clinical nursing research which would be relevant to a range of service areas.---------- Conclusion: Nurse researchers are able to play a crucial role in advancing nursing knowledge and facilitating evidence based practice, especially when placed to support a specialised team of nurses at a service level. This role can be implemented through appropriate planning of the position, building a support system and incorporating an evaluation plan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The RAP-A Indigenous supplement has been designed to provide guidelines for the Adaptation and implementation of the RAP Program for indigenous adolescents. It describes a variety of adaptations that have been made to RAP-A to make it more suitable for indigenous teenagers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Cainozoic alluvium of the Condamine River valley is interpreted to consist of sediments deposited as floodplain and sheetwash deposits in bedrock valleys eroded into Mesozoic sedimentary rocks and tertiary volcanics. A maximum recorded sediment accumulation of 134 m is centred just south of Dalby. The lower section ofboth the flood plain and sheetwash alluvium is composed of variegated sandy and clayey sediments and the upper section of brown and grey sandy and clayey sediments.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LiteSteel Beam (LSB) is a new cold-formed steel beam produced by OneSteel Australian Tube Mills. The new beam is effectively a channel section with two rectangular hollow flanges and a slender web, and is manufactured using a combined cold-forming and electric resistance welding process. OneSteel Australian Tube Mills is promoting the use of LSBs as flexural members in a range of applications, such as floor bearers. When LSBs are used as back to back built-up sections, they are likely to improve their moment capacity and thus extend their applications further. However, the structural behaviour of built-up beams is not well understood. Many steel design codes include guidelines for connecting two channels to form a built-up I-section including the required longitudinal spacing of connections. But these rules were found to be inadequate in some applications. Currently the safe spans of builtup beams are determined based on twice the moment capacity of a single section. Research has shown that these guidelines are conservative. Therefore large scale lateral buckling tests and advanced numerical analyses were undertaken to investigate the flexural behaviour of back to back LSBs connected by fasteners (bolts) at various longitudinal spacings under uniform moment conditions. In this research an experimental investigation was first undertaken to study the flexural behaviour of back to back LSBs including its buckling characteristics. This experimental study included tensile coupon tests, initial geometric imperfection measurements and lateral buckling tests. The initial geometric imperfection measurements taken on several back to back LSB specimens showed that the back to back bolting process is not likely to alter the imperfections, and the measured imperfections are well below the fabrication tolerance limits. Twelve large scale lateral buckling tests were conducted to investigate the behaviour of back to back built-up LSBs with various longitudinal fastener spacings under uniform moment conditions. Tests also included two single LSB specimens. Test results showed that the back to back LSBs gave higher moment capacities in comparison with single LSBs, and the fastener spacing influenced the ultimate moment capacities. As the fastener spacing was reduced the ultimate moment capacities of back to back LSBs increased. Finite element models of back to back LSBs with varying fastener spacings were then developed to conduct a detailed parametric study on the flexural behaviour of back to back built-up LSBs. Two finite element models were developed, namely experimental and ideal finite element models. The models included the complex contact behaviour between LSB web elements and intermittently fastened bolted connections along the web elements. They were validated by comparing their results with experimental results and numerical results obtained from an established buckling analysis program called THIN-WALL. These comparisons showed that the developed models could accurately predict both the elastic lateral distortional buckling moments and the non-linear ultimate moment capacities of back to back LSBs. Therefore the ideal finite element models incorporating ideal simply supported boundary conditions and uniform moment conditions were used in a detailed parametric study on the flexural behaviour of back to back LSB members. In the detailed parametric study, both elastic buckling and nonlinear analyses of back to back LSBs were conducted for 13 LSB sections with varying spans and fastener spacings. Finite element analysis results confirmed that the current design rules in AS/NZS 4600 (SA, 2005) are very conservative while the new design rules developed by Anapayan and Mahendran (2009a) for single LSB members were also found to be conservative. Thus new member capacity design rules were developed for back to back LSB members as a function of non-dimensional member slenderness. New empirical equations were also developed to aid in the calculation of elastic lateral distortional buckling moments of intermittently fastened back to back LSBs. Design guidelines were developed for the maximum fastener spacing of back to back LSBs in order to optimise the use of fasteners. A closer fastener spacing of span/6 was recommended for intermediate spans and some long spans where the influence of fastener spacing was found to be high. In the last phase of this research, a detailed investigation was conducted to investigate the potential use of different types of connections and stiffeners in improving the flexural strength of back to back LSB members. It was found that using transverse web stiffeners was the most cost-effective and simple strengthening method. It is recommended that web stiffeners are used at the supports and every third points within the span, and their thickness is in the range of 3 to 5 mm depending on the size of LSB section. The use of web stiffeners eliminated most of the lateral distortional buckling effects and hence improved the ultimate moment capacities. A suitable design equation was developed to calculate the elastic lateral buckling moments of back to back LSBs with the above recommended web stiffener configuration while the same design rules developed for unstiffened back to back LSBs were recommended to calculate the ultimate moment capacities.