184 resultados para eventi, connessioni, Node JS, event loop, thread, aggregazione
Resumo:
Emerging data streaming applications in Wireless Sensor Networks require reliable and energy-efficient Transport Protocols. Our recent Wireless Sensor Network deployment in the Burdekin delta, Australia, for water monitoring [T. Le Dinh, W. Hu, P. Sikka, P. Corke, L. Overs, S. Brosnan, Design and deployment of a remote robust sensor network: experiences from an outdoor water quality monitoring network, in: Second IEEE Workshop on Practical Issues in Building Sensor Network Applications (SenseApp 2007), Dublin, Ireland, 2007] is one such example. This application involves streaming sensed data such as pressure, water flow rate, and salinity periodically from many scattered sensors to the sink node which in turn relays them via an IP network to a remote site for archiving, processing, and presentation. While latency is not a primary concern in this class of application (the sampling rate is usually in terms of minutes or hours), energy-efficiency is. Continuous long-term operation and reliable delivery of the sensed data to the sink are also desirable. This paper proposes ERTP, an Energy-efficient and Reliable Transport Protocol for Wireless Sensor Networks. ERTP is designed for data streaming applications, in which sensor readings are transmitted from one or more sensor sources to a base station (or sink). ERTP uses a statistical reliability metric which ensures the number of data packets delivered to the sink exceeds the defined threshold. Our extensive discrete event simulations and experimental evaluations show that ERTP is significantly more energyefficient than current approaches and can reduce energy consumption by more than 45% when compared to current approaches. Consequently, sensor nodes are more energy-efficient and the lifespan of the unattended WSN is increased.
Resumo:
This paper argues that management education needs to consider a trend in learning design which advances more creative learning through an alliance with art-based pedagogical processes. A shift is required from skills training to facilitating transformational learning through experiences that expand human potential, facilitated by artistic processes. In this paper the authors discuss the necessity for creativity and innovation in the workplace and the need to develop better leaders and managers. The inclusion of arts-based processes enhances artful behaviour, aesthetics and creativity within management and organisational behaviour, generating important implications for business innovation. This creative learning focus stems from an analysis of an arts-based intervention for management development. Entitled Management Jazz the program was conducted over three years at a large Australian University. The paper reviews some of the salient literature in the field. It considers four stages of the learning process: capacity, artful event, increased capability, and application/action to produce product. One illustrative example of an arts-based learning process is provided from the Management Jazz program. Research findings indicate that artful learning opportunities enhance capacity for awareness of creativity in one’s self and in others. This capacity correlates positively with a perception that engaging in artful learning enhances the capability of managers in changing collaborative relationships and habitat constraint. The authors conclude that it is through engagement and creative alliance with the arts that management education can explore and discover artful approaches to building creativity and innovation. The illustration presented in this paper will be delivered as a brief workshop at the Fourth Art of Management Conference. The process of bricolage and articles at hand will be used to explore creative constraints and prototypes while generating group collaboration. The mini-workshop will conclude with discussion of the arts-based process and capability enhancement outcomes.
Resumo:
Speeding is recognized as a major contributing factor in traffic crashes. In order to reduce speed-related crashes, the city of Scottsdale, Arizona implemented the first fixed-camera photo speed enforcement program (SEP) on a limited access freeway in the US. The 9-month demonstration program spanning from January 2006 to October 2006 was implemented on a 6.5 mile urban freeway segment of Arizona State Route 101 running through Scottsdale. This paper presents the results of a comprehensive analysis of the impact of the SEP on speeding behavior, crashes, and the economic impact of crashes. The impact on speeding behavior was estimated using generalized least square estimation, in which the observed speeds and the speeding frequencies during the program period were compared to those during other periods. The impact of the SEP on crashes was estimated using 3 evaluation methods: a before-and-after (BA) analysis using a comparison group, a BA analysis with traffic flow correction, and an empirical Bayes BA analysis with time-variant safety. The analysis results reveal that speeding detection frequencies (speeds> or =76 mph) increased by a factor of 10.5 after the SEP was (temporarily) terminated. Average speeds in the enforcement zone were reduced by about 9 mph when the SEP was implemented, after accounting for the influence of traffic flow. All crash types were reduced except rear-end crashes, although the estimated magnitude of impact varies across estimation methods (and their corresponding assumptions). When considering Arizona-specific crash related injury costs, the SEP is estimated to yield about $17 million in annual safety benefits.
Resumo:
This paper discusses a new paradigm of real-time simulation of power systems in which equipment can be interfaced with a real-time digital simulator. In this scheme, one part of a power system can be simulated by using a real-time simulator; while the other part is implemeneted as a physical system. The only interface of the physical system with the computer-based simulator is through data-acquisition system. The physical system is driven by a voltage-source converter (VSC)that mimics the power system simulated in the real-time simulator. In this papar, the VSC operates in a voltage-control mode to track the point of common coupling voltage signal supplied by the digital simulator. This type of splitting a network in two parts and running a real-time simulation with a physical system in parallel is called a power network in loop here. this opens up the possibility of study of interconnection o f one or several distributed generators to a complex power network. The proposed implementation is verified through simulation studies using PSCAD/EMTDC and through hardware implementation on a TMS320G2812 DSP.
Resumo:
This paper introduces an event-based traffic model for railway systems adopting fixed-block signalling schemes. In this model, the events of trains' arrival at and departure from signalling blocks constitute the states of the traffic flow. A state transition is equivalent to the progress of the trains by one signalling block and it is realised by referring to past and present states, as well as a number of pre-calculated look-up tables of run-times in the signalling block under various signalling conditions. Simulation results are compared with those from a time-based multi-train simulator to study the improvement of processing time and accuracy.
Resumo:
In vitro cardiovascular device performance evaluation in a mock circulation loop (MCL) is a necessary step prior to in vivo testing.A MCL that accurately represents the physiology of the cardiovascular system accelerates the assessment of the device’s ability to treat pathological conditions. To serve this purpose, a compact MCL measuring 600 ¥ 600 ¥ 600 mm (L ¥ W¥ H) was constructed in conjunction with a computer mathematical simulation.This approach allowed the effective selection of physical loop characteristics, such as pneumatic drive parameters, to create pressure and flow, and pipe dimensions to replicate the resistance, compliance, and fluid inertia of the native cardiovascular system. The resulting five-element MCL reproduced the physiological hemodynamics of a healthy and failing heart by altering ventricle contractility, vascular resistance/compliance, heart rate, and vascular volume. The effects of interpatient anatomical variability, such as septal defects and valvular disease, were also assessed. Cardiovascular hemodynamic pressures (arterial, venous, atrial, ventricular), flows (systemic, bronchial, pulmonary), and volumes (ventricular, stroke) were analyzed in real time. The objective of this study is to describe the developmental stages of the compact MCL and demonstrate its value as a research tool for the accelerated development of cardiovascular devices.
Resumo:
The city of Scottsdale Arizona implemented the first fixed photo Speed Enforcement camera demonstration Program (SEP) on a US freeway in 2006. A comprehensive before-and-after analysis of the impact of the SEP on safety revealed significant reductions in crash frequency and severity, which indicates that the SEP is a promising countermeasure for improving safety. However, there is often a trade off between safety and mobility when safety investments are considered. As a result, identifying safety countermeasures that both improve safety and reduce Travel Time Variability (TTV) is a desirable goal for traffic safety engineers. This paper reports on the analysis of the mobility impacts of the SEP by simulating the traffic network with and without the SEP, calibrated to real world conditions. The simulation results show that the SEP decreased the TTV: the risk of unreliable travel was at least 23% higher in the ‘without SEP’ scenario than in the ‘with SEP’ scenario. In addition, the total Travel Time Savings (TTS) from the SEP was estimated to be at least ‘569 vehicle-hours/year.’ Consequently, the SEP is an efficient countermeasure not only for reducing crashes but also for improving mobility through TTS and reduced TTV.
Resumo:
This paper reveals the interior landscapes of selected contemporary Australian films, such as The Caterpillar Wish and Bad Boy Bubby, to develop a number of thematic influences on the manner in which domestic and private lives are constructed through filmic imagination. The research uncovers the conditions that contribute to particular scenographic representations of the humble interiors that act as both backdrop and performer to subtle and often troubled narratives. Such readings are informed by the theoretical works of writer Gertrude Stein, among others, who explore the relationships between the scenographic third dimension and the fourth dimensional performance in the representation of narrative space. A further theoretical thread lies in Giuliana Bruno’s work on the tension between private and public filmic space, which is explored through the public outing of intensely private spaces generated through narratives framed by the specificities of found interiors. Beyond the interrogation of qualities of imagined filmic space is the condition whereby locations, once transformed by the event of movie making are consequently forever revised. These altered conditions subsequently reinvest the lives of those who return to the location with layered narratives of occupation. Situationally, the now reconverted interior performs as contributor to subsequent private inhabitation, even if only as imagined space. The possibility here is that the qualities of the original may be superimposed and recontextualised to invest post-produced interiors with the qualities of the other space as imagined. This reading of film space explores new theoretical design scenarios for imagined and everyday interior landscapes.
Resumo:
This paper describes and analyses the procurement processes employed in delivering the Sydney Olympic Stadium – arguably the most significant stadia project in the region today. This current high profile project is discussed in terms of a case study into the procurement processes used. Interviews, personal site visits and questionnaires were used to obtain information on the procurement processes used and comments on their application to the project. The alternative procurement process used on this project—Design and Construction within a Build, Own, Operate and Transfer (BOOT) project—is likely to impact on the construction industry as a whole. Already other projects and sectors are following this lead. Based on a series of on-site interviews and questionnaires, a series of benefits and drawbacks to this procurement strategy are provided.The Olympic Stadium project has also been further analysed during construction through a Degree of Interaction framework to determine anticipated project success. This analysis investigates project interaction and user satisfaction to provide a comparable rating. A series of questionnaires were used to collect data to calculate the Degree of Interaction and User Satisfaction ratings.
Resumo:
Mock circulation loops (MCLs) are used to evaluate cardiovascular devices prior to in-vivo trials; however they lack the vital autoregulatory responses that occur in humans. This study aimed to develop and implement a left and right ventricular Frank-Starling response in a MCL. A proportional controller based on ventricular end diastolic volume was used to control the driving pressure of the MCL’s pneumatically operated ventricles. Ventricular pressure-volume loops and end systolic pressure-volume relationships were produced for a variety of healthy and pathological conditions and compared with human data to validate the simulated Frank-Starling response. The non-linear Frank-Starling response produced in this study successfully altered left and right ventricular contractility with changing preload and was validated with previously reported data. This improvement to an already detailed MCL has resulted in a test rig capable of further refining cardiovascular devices and reducing the number of in-vivo trials.