4 resultados para eventi, connessioni, Node JS, event loop, thread, aggregazione
em CaltechTHESIS
Resumo:
This thesis presents theories, analyses, and algorithms for detecting and estimating parameters of geospatial events with today's large, noisy sensor networks. A geospatial event is initiated by a significant change in the state of points in a region in a 3-D space over an interval of time. After the event is initiated it may change the state of points over larger regions and longer periods of time. Networked sensing is a typical approach for geospatial event detection. In contrast to traditional sensor networks comprised of a small number of high quality (and expensive) sensors, trends in personal computing devices and consumer electronics have made it possible to build large, dense networks at a low cost. The changes in sensor capability, network composition, and system constraints call for new models and algorithms suited to the opportunities and challenges of the new generation of sensor networks. This thesis offers a single unifying model and a Bayesian framework for analyzing different types of geospatial events in such noisy sensor networks. It presents algorithms and theories for estimating the speed and accuracy of detecting geospatial events as a function of parameters from both the underlying geospatial system and the sensor network. Furthermore, the thesis addresses network scalability issues by presenting rigorous scalable algorithms for data aggregation for detection. These studies provide insights to the design of networked sensing systems for detecting geospatial events. In addition to providing an overarching framework, this thesis presents theories and experimental results for two very different geospatial problems: detecting earthquakes and hazardous radiation. The general framework is applied to these specific problems, and predictions based on the theories are validated against measurements of systems in the laboratory and in the field.
Resumo:
Computational general relativity is a field of study which has reached maturity only within the last decade. This thesis details several studies that elucidate phenomena related to the coalescence of compact object binaries. Chapters 2 and 3 recounts work towards developing new analytical tools for visualizing and reasoning about dynamics in strongly curved spacetimes. In both studies, the results employ analogies with the classical theory of electricity and magnitism, first (Ch. 2) in the post-Newtonian approximation to general relativity and then (Ch. 3) in full general relativity though in the absence of matter sources. In Chapter 4, we examine the topological structure of absolute event horizons during binary black hole merger simulations conducted with the SpEC code. Chapter 6 reports on the progress of the SpEC code in simulating the coalescence of neutron star-neutron star binaries, while Chapter 7 tests the effects of various numerical gauge conditions on the robustness of black hole formation from stellar collapse in SpEC. In Chapter 5, we examine the nature of pseudospectral expansions of non-smooth functions motivated by the need to simulate the stellar surface in Chapters 6 and 7. In Chapter 8, we study how thermal effects in the nuclear equation of state effect the equilibria and stability of hypermassive neutron stars. Chapter 9 presents supplements to the work in Chapter 8, including an examination of the stability question raised in Chapter 8 in greater mathematical detail.
Resumo:
Coronal mass ejections (CMEs) are dramatic eruptions of large, plasma structures from the Sun. These eruptions are important because they can harm astronauts, damage electrical infrastructure, and cause auroras. A mysterious feature of these eruptions is that plasma-filled solar flux tubes first evolve slowly, but then suddenly erupt. One model, torus instability, predicts an explosive-like transition from slow expansion to fast acceleration, if the spatial decay of the ambient magnetic field exceeds a threshold.
We create arched, plasma filled, magnetic flux ropes similar to CMEs. Small, independently-powered auxiliary coils placed inside the vacuum chamber produce magnetic fields above the decay threshold that are strong enough to act on the plasma. When the strapping field is not too strong and not too weak, expansion force build up while the flux rope is in the strapping field region. When the flux rope moves to a critical height, the plasma accelerates quickly, corresponding to the observed slow-rise to fast-acceleration of most solar eruptions. This behavior is in agreement with the predictions of torus instability.
Historically, eruptions have been separated into gradual CMEs and impulsive CMEs, depending on the acceleration profile. Recent numerical studies question this separation. One study varies the strapping field profile to produce gradual eruptions and impulsive eruptions, while another study varies the temporal profile of the voltage applied to the flux tube footpoints to produce the two eruption types. Our experiment reproduced these different eruptions by changing the strapping field magnitude, and the temporal profile of the current trace. This suggests that the same physics underlies both types of CME and that the separation between impulsive and gradual classes of eruption is artificial.
Resumo:
This thesis presents methods by which electrical analogies can be obtained for nonlinear systems. The accuracy of these methods is investigated and several specific types of nonlinear equations are studied in detail.
In Part I a general method is given for obtaining electrical analogs of nonlinear systems with one degree of freedom. Loop and node methods are compared and the stability of the loop analogy is briefly considered.
Parts II and III give a description of the equipment and a discussion of its accuracy. Comparisons are made between experimental and analytic solutions of linear systems.
Part IV is concerned with systems having a nonlinear restoring force. In particular, solutions of Duffing's equation are obtained, both by using the electrical analogy and also by approximate analytical methods.
Systems with nonlinear damping are considered in Part V. Two specific examples are chosen: (1) forced oscillations and (2) self-excited oscillations (van der Pol’s equation). Comparisons are made with approximate analytic solutions.
Part VI gives experimental data for a system obeying Mathieu's equation. Regions of stability are obtained. Examples of subharmonic, ultraharmonic, and ultrasubharmonic oscillat1ons are shown.