170 resultados para decision support system
Resumo:
Over the last decade, system integration has grown in popularity as it allows organisations to streamline business processes. Traditionally, system integration has been conducted through point-to-point solutions – as a new integration scenario requirement arises, a custom solution is built between the relevant systems. Bus-based solutions are now preferred, whereby all systems communicate via an intermediary system such as an enterprise service bus, using a common data exchange model. This research investigates the use of a common data exchange model based on open standards, specifically MIMOSA OSA-EAI, for asset management system integration. A case study is conducted that involves the integration of processes between a SCADA, maintenance decision support and work management system. A diverse number of software platforms are employed in developing the final solution, all tied together through MIMOSA OSA-EAI-based XML web services. The lessons learned from the exercise are presented throughout the paper.
Resumo:
This document provides a review of international and national practices in investment decision support tools in road asset management. Efforts were concentrated on identifying analytic frameworks, evaluation methodologies and criteria adopted by current tools. Emphasis was also given to how current approaches support Triple Bottom Line decision-making. Benefit Cost Analysis and Multiple Criteria Analysis are principle methodologies in supporting decision-making in Road Asset Management. The complexity of the applications shows significant differences in international practices. There is continuing discussion amongst practitioners and researchers regarding to which one is more appropriate in supporting decision-making. It is suggested that the two approaches should be regarded as complementary instead of competitive means. Multiple Criteria Analysis may be particularly helpful in early stages of project development, say strategic planning. Benefit Cost Analysis is used most widely for project prioritisation and selecting the final project from amongst a set of alternatives. Benefit Cost Analysis approach is useful tool for investment decision-making from an economic perspective. An extension of the approach, which includes social and environmental externalities, is currently used in supporting Triple Bottom Line decision-making in the road sector. However, efforts should be given to several issues in the applications. First of all, there is a need to reach a degree of commonality on considering social and environmental externalities, which may be achieved by aggregating the best practices. At different decision-making level, the detail of consideration of the externalities should be different. It is intended to develop a generic framework to coordinate the range of existing practices. The standard framework will also be helpful in reducing double counting, which appears in some current practices. Cautions should also be given to the methods of determining the value of social and environmental externalities. A number of methods, such as market price, resource costs and Willingness to Pay, are found in the review. The use of unreasonable monetisation methods in some cases has discredited Benefit Cost Analysis in the eyes of decision makers and the public. Some social externalities, such as employment and regional economic impacts, are generally omitted in current practices. This is due to the lack of information and credible models. It may be appropriate to consider these externalities in qualitative forms in a Multiple Criteria Analysis. Consensus has been reached in considering noise and air pollution in international practices. However, Australia practices generally omitted these externalities. Equity is an important consideration in Road Asset Management. The considerations are either between regions, or social groups, such as income, age, gender, disable, etc. In current practice, there is not a well developed quantitative measure for equity issues. More research is needed to target this issue. Although Multiple Criteria Analysis has been used for decades, there is not a generally accepted framework in the choice of modelling methods and various externalities. The result is that different analysts are unlikely to reach consistent conclusions about a policy measure. In current practices, some favour using methods which are able to prioritise alternatives, such as Goal Programming, Goal Achievement Matrix, Analytic Hierarchy Process. The others just present various impacts to decision-makers to characterise the projects. Weighting and scoring system are critical in most Multiple Criteria Analysis. However, the processes of assessing weights and scores were criticised as highly arbitrary and subjective. It is essential that the process should be as transparent as possible. Obtaining weights and scores by consulting local communities is a common practice, but is likely to result in bias towards local interests. Interactive approach has the advantage in helping decision-makers elaborating their preferences. However, computation burden may result in lose of interests of decision-makers during the solution process of a large-scale problem, say a large state road network. Current practices tend to use cardinal or ordinal scales in measure in non-monetised externalities. Distorted valuations can occur where variables measured in physical units, are converted to scales. For example, decibels of noise converts to a scale of -4 to +4 with a linear transformation, the difference between 3 and 4 represents a far greater increase in discomfort to people than the increase from 0 to 1. It is suggested to assign different weights to individual score. Due to overlapped goals, the problem of double counting also appears in some of Multiple Criteria Analysis. The situation can be improved by carefully selecting and defining investment goals and criteria. Other issues, such as the treatment of time effect, incorporating risk and uncertainty, have been given scant attention in current practices. This report suggested establishing a common analytic framework to deal with these issues.
Resumo:
Simulation is widely used as a tool for analyzing business processes but is mostly focused on examining abstract steady-state situations. Such analyses are helpful for the initial design of a business process but are less suitable for operational decision making and continuous improvement. Here we describe a simulation system for operational decision support in the context of workflow management. To do this we exploit not only the workflow’s design, but also use logged data describing the system’s observed historic behavior, and incorporate information extracted about the current state of the workflow. Making use of actual data capturing the current state and historic information allows our simulations to accurately predict potential near-future behaviors for different scenarios. The approach is supported by a practical toolset which combines and extends the workflow management system YAWL and the process mining framework ProM.
Resumo:
A successful urban management support system requires an integrated approach. This integration includes bringing together economic, socio-cultural and urban development with a well orchestrated, transparent and open decision making mechanism. The chapter emphasizes the importance of integrated urban management to better tackle the climate change, and to achieve sustainable urban development and sound urban growth management. This chapter introduces recent approaches on urban management systems, such as intelligent urban management systems, that are suitable for ubiquitous cities. The chapter discusses the essential role of online collaborative decision making in urban and infrastructure planning, development and management, and advocates transparent, fully democratic and participatory mechanisms for an effective urban management system that is particularly suitable for ubiquitous cities. This chapter also sheds light on some of the unclear processes of urban management of ubiquitous cities and online collaborative decision making, and reveals the key benefits of integrated and participatory mechanisms in successfully constructing sustainable ubiquitous cities.
Resumo:
Many airports around the world are diversifying their land use strategies to integrate non-aeronautical development. These airports embrace the “airport city” concept to develop a wide range of commercial and light industrial land uses to support airport revenues. The consequences of this changing urban form are profound for both airport and municipal planners alike and present numerous challenges with regard to integration of airport and regional planning. While several tools exist for regional planning and airport operational planning, no holistic airport landside and regional planning tool exist. What is required is a planning support system that can integrate the sometimes conflicting stakeholder interests into one common goal for the airport and the surrounding region. This paper presents a planning support system and evaluates its application to a case study involving Brisbane Airport and the South East Queensland region in Australia.
Resumo:
Conventional planning and decision making, with its sectoral and territorial emphasis and flat-map based processes are no longer adequate or appropriate for the increased complexity confronting airport/city interfaces. These crowed and often contested governance spaces demand a more iterative and relational planning and decision-making approach. Emergent GIS based planning and decision-making tools provide a mechanism which integrate and visually display an array of complex data, frameworks and scenarios/expectations, often in ‘real time’ computations. In so doing, these mechanisms provide a common ground for decision making and facilitate a more ‘joined-up’ approach to airport/city planning. This paper analyses the contribution of the Airport Metropolis Planning Support System (PSS) to sub-regional planning in the Brisbane Airport case environment.
Resumo:
There is a growing need for parametric design software that communicates building performance feedback in early architectural exploration to support decision-making. This paper examines how the circuit of design and analysis process can be closed to provide active and concurrent feedback between architecture and services engineering domains. It presents the structure for an openly customisable design system that couples parametric modelling and energy analysis software to allow designers to assess the performance of early design iterations quickly. Finally, it discusses how user interactions with the system foster information exchanges that facilitate the sharing of design intelligence across disciplines.
Resumo:
Linear (or continuous) assets are engineering infrastructure that usually spans long distances and can be divided into different segments, all of which perform the same function but may be subject to different loads and environmental factors. Typical linear assets include railway lines, roads, pipelines and cables. How and when to renew such assets are critical decisions for asset owners as they normally involves significant capital investment. Through investigating the characteristics of linear asset renewal decisions and identifying the critical requirements that are associated with renewal decisions, we present a multi-criteria decision support method to help optimise renewal decisions. A case study that concerns renewal of an economiser's tubing system is a coal-fired power station is adopted to demonstrate the application of this method. Although the paper concerns a particular linear asset decision type, the approach has broad applicability for linear asset management.
Resumo:
Purpose – The rapidly changing role of capital city airports has placed demands on surrounding infrastructure. The need for infrastructure management and coordination is increasing as airports and cities grow and share common infrastructure frameworks. The purpose of this paper is to document the changing context in Australia, where the privatisation of airports has stimulated considerable land development with resulting pressures on surrounding infrastructure provision. It aims to describe a tool that is being developed to support decision-making between various stakeholders in the airport region. The use of planning support systems improves both communication and data transfer between stakeholders and provides a foundation for complex decisions on infrastructure. Design/methodology/approach – The research uses a case study approach and focuses on Brisbane International Airport and Brisbane City Council. The research is primarily descriptive and provides an empirical assessment of the challenges of developing and implementing planning support systems as a tool for governance and decision-making. Findings – The research assesses the challenges in implementing a common data platform for stakeholders. Agency data platforms and models, traditional roles in infrastructure planning, and integrating similar data platforms all provide barriers to sharing a common language. The use of a decision support system has to be shared by all stakeholders with a common platform that can be versatile enough to support scenarios and changing conditions. The use of iPadss for scenario modelling provides stakeholders the opportunity to interact, compare scenarios and views, and react with the modellers to explore other options. Originality/value – The research confirms that planning support systems have to be accessible and interactive by their users. The Airport City concept is a new and evolving focus for airport development and will place continuing pressure on infrastructure servicing. A coordinated and efficient approach to infrastructure decision-making is critical, and an interactive planning support system that can model infrastructure scenarios provides a sound tool for governance.
Resumo:
Unmanned Aircraft Systems (UAS) describe a diverse range of aircraft that are operated without a human pilot on-board. Unmanned aircraft range from small rotorcraft, which can fit in the palm of your hand, through to fixed wing aircraft comparable in size to that of a commercial passenger jet. The absence of a pilot on-board allows these aircraft to be developed with unique performance capabilities facilitating a wide range of applications in surveillance, environmental management, agriculture, defence, and search and rescue. However, regulations relating to the safe design and operation of UAS first need to be developed before the many potential benefits from these applications can be realised. According to the International Civil Aviation Organization (ICAO), a Risk Management Process (RMP) should support all civil aviation policy and rulemaking activities (ICAO 2009). The RMP is described in International standard, ISO 31000:2009 (ISO, 2009a). This standard is intentionally generic and high-level, providing limited guidance on how it can be effectively applied to complex socio-technical decision problems such as the development of regulations for UAS. Through the application of principles and tools drawn from systems philosophy and systems engineering, this thesis explores how the RMP can be effectively applied to support the development of safety regulations for UAS. A sound systems-theoretic foundation for the RMP is presented in this thesis. Using the case-study scenario of a UAS operation over an inhabited area and through the novel application of principles drawn from general systems modelling philosophy, a consolidated framework of the definitions of the concepts of: safe, risk and hazard is made. The framework is novel in that it facilitates the representation of broader subjective factors in an assessment of the safety of a system; describes the issues associated with the specification of a system-boundary; makes explicit the hierarchical nature of the relationship between the concepts and the subsequent constraints that exist between them; and can be evaluated using a range of analytic or deliberative modelling techniques. Following the general sequence of the RMP, the thesis explores the issues associated with the quantified specification of safety criteria for UAS. A novel risk analysis tool is presented. In contrast to existing risk tools, the analysis tool presented in this thesis quantifiably characterises both the societal and individual risk of UAS operations as a function of the flight path of the aircraft. A novel structuring of the risk evaluation and risk treatment decision processes is then proposed. The structuring is achieved through the application of the Decision Support Problem Technique; a modelling approach that has been previously used to effectively model complex engineering design processes and to support decision-making in relation to airspace design. The final contribution made by this thesis is in the development of an airworthiness regulatory framework for civil UAS. A novel "airworthiness certification matrix" is proposed as a basis for the definition of UAS "Part 21" regulations. The outcome airworthiness certification matrix provides a flexible, systematic and justifiable method for promulgating airworthiness regulations for UAS. In addition, an approach for deriving "Part 1309" regulations for UAS is presented. In contrast to existing approaches, the approach presented in this thesis facilitates a traceable and objective tailoring of system-level reliability requirements across the diverse range of UAS operations. The significance of the research contained in this thesis is clearly demonstrated by its practical real world outcomes. Industry regulatory development groups and the Civil Aviation Safety Authority have endorsed the proposed airworthiness certification matrix. The risk models have also been used to support research undertaken by the Australian Department of Defence. Ultimately, it is hoped that the outcomes from this research will play a significant part in the shaping of regulations for civil UAS, here in Australia and around the world.
Resumo:
Acoustic sensors allow scientists to scale environmental monitoring over large spatiotemporal scales. The faunal vocalisations captured by these sensors can answer ecological questions, however, identifying these vocalisations within recorded audio is difficult: automatic recognition is currently intractable and manual recognition is slow and error prone. In this paper, a semi-automated approach to call recognition is presented. An automated decision support tool is tested that assists users in the manual annotation process. The respective strengths of human and computer analysis are used to complement one another. The tool recommends the species of an unknown vocalisation and thereby minimises the need for the memorization of a large corpus of vocalisations. In the case of a folksonomic tagging system, recommending species tags also minimises the proliferation of redundant tag categories. We describe two algorithms: (1) a “naïve” decision support tool (16%–64% sensitivity) with efficiency of O(n) but which becomes unscalable as more data is added and (2) a scalable alternative with 48% sensitivity and an efficiency ofO(log n). The improved algorithm was also tested in a HTML-based annotation prototype. The result of this work is a decision support tool for annotating faunal acoustic events that may be utilised by other bioacoustics projects.
Resumo:
The computing tools and technologies with urban information systems are designed to enhance planners’ capability to deal with complex urban environments and to plan for prosperous and liveable communities. This paper examines the role of Online Urban Information Systems or in another words Internet based Geographic Information Systems as spatial decision support systems to aid local planning process. This paper introduces a prototype Internet GIS model that aims to integrate a public oriented interactive decision support system for urban planning process. This model, referred as a ‘Community based Internet GIS’, incorporates advanced information technologies and community involvement in decision making processes on the web environment. This innovative model has been recently applied to a pilot case in Tokyo and this paper concludes with the preliminary results of this project.
Resumo:
This report presents a summary of the research conducted by the research team of the CRC project 2002-005-C, “Decision support tools for concrete infrastructure rehabilitation”. The project scope, objectives, significance and innovation and the research methodology is outlined in the introduction, which is followed by five chapters covering different aspects of the research completed. Major findings of a review of literature conducted covering both use of fibre reinforced polymer composites in rehabilitation of concrete bridge structures and decision support frameworks in civil infrastructure asset management is presented in chapter two. Case study of development of a strengthening scheme for the “Tenthill Creek bridge” is covered in the third chapter, which summarises the capacity assessment, traditional strengthening solution and the innovative solution using FRP composites. The fourth chapter presents the methodology for development of a user guide covering selection of materials, design and application of FRP in strengthening of concrete structures, which were demonstrated using design examples. Fifth chapter presents the methodology developed for evaluating whole of life cycle costing of treatment options for concrete bridge structures. The decision support software tool developed to compare different treatment options based on reliability based whole of life cycle costing will be briefly described in this chapter as well. The report concludes with a summary of findings and recommendations for future research.
Resumo:
This paper describes the process adopted in developing an integrated decision support framework for planning of office building refurbishment projects, with specific emphasize on optimising rentable floor space, structural strengthening, residual life and sustainability. Expert opinion on the issues to be considered in a tool is being captured through the DELPHI process, which is currently ongoing. The methodology for development of the integrated tool will be validated through decisions taken during a case study project: refurbishment of CH1 building of Melbourne City Council, which will be followed through to completion by the research team. Current status of the CH1 planning will be presented in the context of the research project.