87 resultados para coat dormancy
Resumo:
Porous SiO2 scaffolds with mesopore structure (named as MS scaffolds) have been proposed as suitable for bone tissue engineering due to their excellent drug-delivery ability; however, the mineralization and cytocompatibility of MS scaffolds are far from optimal for bone tissue engineering, and it is also unclear how the delivery of drugs from MS scaffolds affects osteoblastic cells. The aims of the present study were to improve the mineralization and cytocompatibility of MS scaffolds by coating mussel-inspired polydopamine on the pore walls of scaffolds. The effects of polydopamine modification on MS scaffolds was investigated with respect to apatite mineralization and the attachment, proliferation and differentiation of bone marrow stromal cells (BMSCs), as was the release profile of the drug dexamethasone (DEX). Our results show that polydopamine can readily coat the pore walls of MS scaffolds and that polydopamine-modified MS scaffolds have a significantly improved apatite-mineralization ability as well as better attachment and proliferation of BMSCs in the scaffolds, compared to controls. Polydopamine modification did not alter the release profile of DEX from MS scaffolds but the sustained delivery of DEX significantly improved alkaline phosphatase (ALP) activity of BMSCs in the scaffolds. These results suggest that polydopamine modification is a viable option to enhance the bioactivity of bone tissue engineering scaffolds and, further, that DEX-loaded polydopamine MS scaffolds have potential uses as a release system to enhance the osteogenic properties of bone tissue engineering applications.
Resumo:
Background: Potyviruses are found world wide, are spread by probing aphids and cause considerable crop damage. Potyvirus is one of the two largest plant virus genera and contains about 15% of all named plant virus species. When and why did the potyviruses become so numerous? Here we answer the first question and discuss the other. Methods and Findings: We have inferred the phylogenies of the partial coat protein gene sequences of about 50 potyviruses, and studied in detail the phylogenies of some using various methods and evolutionary models. Their phylogenies have been calibrated using historical isolation and outbreak events: the plum pox virus epidemic which swept through Europe in the 20th century, incursions of potyviruses into Australia after agriculture was established by European colonists, the likely transport of cowpea aphid-borne mosaic virus in cowpea seed from Africa to the Americas with the 16th century slave trade and the similar transport of papaya ringspot virus from India to the Americas. Conclusions/Significance: Our studies indicate that the partial coat protein genes of potyviruses have an evolutionary rate of about 1.1561024 nucleotide substitutions/site/year, and the initial radiation of the potyviruses occurred only about 6,600 years ago, and hence coincided with the dawn of agriculture. We discuss the ways in which agriculture may have triggered the prehistoric emergence of potyviruses and fostered their speciation.
Resumo:
Expression of caveolin-1 is up-regulated in prostate cancer metastasis and is associated with aggressive recurrence of the disease. Intriguingly, caveolin-1 is also secreted from prostate cancer cell lines and has been identified in secreted prostasomes. Caveolin-1 is the major structural component of the plasma membrane invaginations called caveolae. Co-expression of the coat protein Polymerase I and transcript release factor (PTRF) is required for caveolae formation. We recently found that expression of caveolin-1 in the aggressive prostate cancer cell line PC-3 is not accompanied by PTRF, leading to noncaveolar caveolin-1 lipid rafts. Moreover, ectopic expression of PTRF in PC-3 cells sequesters caveolin-1 into caveolae. Here we quantitatively analyzed the effect of PTRF expression on the PC-3 proteome using stable isotope labeling by amino acids in culture and subcellular proteomics. We show that PTRF reduced the secretion of a subset of proteins including secreted proteases, cytokines, and growth regulatory proteins, partly via a reduction in prostasome secretion. To determine the cellular mechanism accounting for the observed reduction in secreted proteins we analyzed total membrane and the detergent-resistant membrane fractions. Our data show that PTRF expression selectively impaired the recruitment of actin cytoskeletal proteins to the detergent-resistant membrane, which correlated with altered cholesterol distribution in PC-3 cells expressing PTRF. Consistent with this, modulating cellular cholesterol altered the actin cytoskeleton and protein secretion in PC-3 cells. Intriguingly, several proteins that function in ER to Golgi trafficking were reduced by PTRF expression. Taken together, these results suggest that the noncaveolar caveolin-1 found in prostate cancer cells generates a lipid raft microenvironment that accentuates secretion pathways, possibly at the step of ER sorting/exit. Importantly, these effects could be modulated by PTRF expression.
Resumo:
Psittacine beak and feather disease (PBFD), caused by Beak and feather disease virus (BFDV), is the most significant infectious disease in psittacines. PBFD is thought to have originated in Australia but is now found worldwide; in Africa, it threatens the survival of the indigenous endangered Cape parrot and the vulnerable black-cheeked lovebird. We investigated the genetic diversity of putative BFDVs from southern Africa. Feathers and heparinized blood samples were collected from 27 birds representing 9 psittacine species, all showing clinical signs of PBFD. DNA extracted from these samples was used for PCR amplification of the putative BFDV coat protein (CP) gene. The nucleotide sequences of the CP genes of 19 unique BFDV isolates were determined and compared with the 24 previously described sequences of BFDV isolates from Australasia and America. Phylogenetic analysis revealed eight BFDV lineages, with the southern African isolates representing at least three distinctly unique genotypes; 10 complete genome sequences were determined, representing at least one of every distinct lineage. The nucleotide diversity of the southern African isolates was calculated to be 6.4% and is comparable to that found in Australia and New Zealand. BFDVs in southern Africa have, however, diverged substantially from viruses found in other parts of the world, as the average distance between the southern African isolates and BFDV isolates from Australia ranged from 8.3 to 10.8%. In addition to point mutations, recombination was found to contribute substantially to the level of genetic variation among BFDVs, with evidence of recombination in all but one of the genomes analyzed.
Resumo:
Background. We have characterised a new highly divergent geminivirus species, Eragrostis curvula streak virus (ECSV), found infecting a hardy perennial South African wild grass. ECSV represents a new genus-level geminivirus lineage, and has a mixture of features normally associated with other specific geminivirus genera. Results. Whereas the ECSV genome is predicted to express a replication associated protein (Rep) from an unspliced complementary strand transcript that is most similar to those of begomoviruses, curtoviruses and topocuviruses, its Rep also contains what is apparently a canonical retinoblastoma related protein interaction motif such as that found in mastreviruses. Similarly, while ECSV has the same unusual TAAGATTCC virion strand replication origin nonanucleotide found in another recently described divergent geminivirus, Beet curly top Iran virus (BCTIV), the rest of the transcription and replication origin is structurally more similar to those found in begomoviruses and curtoviruses than it is to those found in BCTIV and mastreviruses. ECSV also has what might be a homologue of the begomovirus transcription activator protein gene found in begomoviruses, a mastrevirus-like coat protein gene and two intergenic regions. Conclusion. Although it superficially resembles a chimaera of geminiviruses from different genera, the ECSV genome is not obviously recombinant, implying that the features it shares with other geminiviruses are those that were probably present within the last common ancestor of these viruses. In addition to inferring how the ancestral geminivirus genome may have looked, we use the discovery of ECSV to refine various hypotheses regarding the recombinant origins of the major geminivirus lineages. © 2009 Varsani et al; licensee BioMed Central Ltd.
Resumo:
Background Maize streak virus -strain A (MSV-A; Genus Mastrevirus, Family Geminiviridae), the maize-adapted strain of MSV that causes maize streak disease throughout sub-Saharan Africa, probably arose between 100 and 200 years ago via homologous recombination between two MSV strains adapted to wild grasses. MSV recombination experiments and analyses of natural MSV recombination patterns have revealed that this recombination event entailed the exchange of the movement protein - coat protein gene cassette, bounded by the two genomic regions most prone to recombination in mastrevirus genomes; the first surrounding the virion-strand origin of replication, and the second around the interface between the coat protein gene and the short intergenic region. Therefore, aside from the likely adaptive advantages presented by a modular exchange of this cassette, these specific breakpoints may have been largely predetermined by the underlying mechanisms of mastrevirus recombination. To investigate this hypothesis, we constructed artificial, low-fitness, reciprocal chimaeric MSV genomes using alternating genomic segments from two MSV strains; a grass-adapted MSV-B, and a maize-adapted MSV-A. Between them, each pair of reciprocal chimaeric genomes represented all of the genetic material required to reconstruct - via recombination - the highly maize-adapted MSV-A genotype, MSV-MatA. We then co-infected a selection of differentially MSV-resistant maize genotypes with pairs of reciprocal chimaeras to determine the efficiency with which recombination would give rise to high-fitness progeny genomes resembling MSV-MatA. Results Recombinants resembling MSV-MatA invariably arose in all of our experiments. However, the accuracy and efficiency with which the MSV-MatA genotype was recovered across all replicates of each experiment depended on the MSV susceptibility of the maize genotypes used and the precise positions - in relation to known recombination hotspots - of the breakpoints required to re-create MSV-MatA. Although the MSV-sensitive maize genotype gave rise to the greatest variety of recombinants, the measured fitness of each of these recombinants correlated with their similarity to MSV-MatA. Conclusions The mechanistic predispositions of different MSV genomic regions to recombination can strongly influence the accessibility of high-fitness MSV recombinants. The frequency with which the fittest recombinant MSV genomes arise also correlates directly with the escalating selection pressures imposed by increasingly MSV-resistant maize hosts.
Resumo:
Transport between compartments of eukaryotic cells is mediated by coated vesicles. The archetypal protein coats COPI, COPII, and clathrin are conserved from yeast to human. Structural studies of COPII and clathrin coats assembled in vitro without membranes suggest that coat components assemble regular cages with the same set of interactions between components. Detailed three-dimensional structures of coated membrane vesicles have not been obtained. Here, we solved the structures of individual COPI-coated membrane vesicles by cryoelectron tomography and subtomogram averaging of in vitro reconstituted budding reactions. The coat protein complex, coatomer, was observed to adopt alternative conformations to change the number of other coatomers with which it interacts and to form vesicles with variable sizes and shapes. This represents a fundamentally different basis for vesicle coat assembly.
Resumo:
The project 'Good practice for safeguarding student learning engagement in higher education institutions' commenced in late 2010 as a Competitive Grant with funding provided by the Australian Learning and Teaching Council. The project is now overseen by the Office for Learning and Teaching within the Australian Department of Industry, Innovation, Science, Research and Tertiary Education. The project was completed in December 2012. The project was lead by QUT and comprised of the project team: Professor Karen Nelson, (project leader), Ms Tracy Creagh, (project manager) and Adjunct Professor John Clarke. Commencing in late 2010 the project invited a total of eight institutions across Australia and New Zealand (including QUT) who had either: existing programs and activities that monitored student learning engagement (MSLE); were in the early stages of implementing MSLE programs, or; who were piloting MSLE activities. As well, the project involved an advisory group and project evaluator comprising of academic and professional staff across two additional universities.
Resumo:
This report provides an overview of the results of a collaborative research project titled "A model for research supervision of international students in engineering and information technology disciplines". This project aimed to identify factors influencing the success of culturally and linguistically diverse (CALD) higher degree research (HDR) students in the fields of Engineering and Information Technology at three Australian Universities: Queensland University of Technology, The University of Western Australia and Curtin University.
Resumo:
Layers (about 60-100 μm thick) of almost pure BaCuO2 (BC1), as determined using X-ray diffractometry (XRD) and scanning electron microscopy (SEM), coat the surfaces of YBa2Cu3O7-x (Y123) samples partial melt processed using a single-zone vertical furnace. The actual Cu/Ba ratio of the BC1 phase is 1.2-1.3 as determined using energy dispersive X-ray spectrometry (EDS). The nominally BC1 phase displays an exsolution of BC1.5 or BC2 in the form of thin plates (about 50-100 nm thick) along {100}-type cleavage planes or facets. The exsolved phase also fills cracks within the BC1 layer that require it to be in a molten state at some stage of processing. The samples were influenced by Pt contamination from the supporting wire, which may have stabilised the BC1.5 phase. Many of the Y123 grains have the same morphology as the exsolution domains, and run nearly parallel to the thin plates of the exsolved phases, strongly indicating that Y123 nucleation took place at the interface between the BC1 and the BC1.5 or BC2 exsolved phases. The network of nearly parallel exsolved 'channels' provides a matrix and a mechanism through which a high degree of local texture can be initiated in the material.
Resumo:
The nucleotide sequence of the genomic RNA of barley yellow dwarf virus, PAV serotype was determined except for the 5′-terminal base, and its genome organization deduced. The 5,677 nucleotide genome contains five large open reading frames (ORFs). The genes for the coat protein (1) and the putative viral RNA-dependent RNA polymerase were identified. The latter shows a striking degree of similarity to that of carnation mottle virus (CarMV). By comparison with corona- and retrovirus RNAs, it is proposed that a translational frameshift is involved in expression of the polymerase. An ORF encoding an Mr 49,797 protein (50K ORF) may be translated by in-frame readthrough of the coat protein stop codon. The coat protein, an overlapping 17K ORF, and a 3′ 6.7K ORF are likely to be expressed via subgenomic mRNAs. © 1988 IRL Press Limited.
Resumo:
The complete nucleotide sequence of Subterranean clover mottle virus (SCMoV) genomic RNA has been determined. The SCMoV genome is 4,258 nucleotides in length. It shares most nucleotide and amino acid sequence identity with the genome of Lucerne transient streak virus (LTSV). SCMoV RNA encodes four overlapping open reading frames and has a genome organisation similar to that of Cocksfoot mottle virus (CfMV). ORF1 and ORF4 are predicted to encode single proteins. ORF2 is predicted to encode two proteins that are derived from a -1 translational frameshift between two overlapping reading frames (ORF2a and ORF2b). A search of amino acid databases did not find a significant match for ORF1 and the function of this protein remains unclear. ORF2a contains a motif typical of chymotrypsin-like serine proteases and ORF2b has motifs characteristically present in positive-stranded RNA-dependent RNA polymerases. ORF4 is likely to be expressed from a subgenomic RNA and encodes the viral coat protein. The ORF2a/ORF2b overlapping gene expression strategy used by SCMoV and CfMV is similar to that of the poleroviruses and differ from that of other published sobemoviruses. These results suggest that the sobemoviruses could now be divided into two distinct subgroups based on those that express the RNA-dependent RNA polymerase from a single, in-frame polyprotein, and those that express it via a -1 translational frameshifting mechanism.
Resumo:
The effectiveness of different promoters for use in Indica rice transformation was compared. Plasmids encoding the Escherichia coli uidA (gus) gene under the control of CaMV 35S, Emu, Act1 or Ubi1 promoters were delivered into cell suspension cultures by particle bombardment. Transient gene expression, 48 h after delivery, was greatest from plasmids utilising the constitutive promoters, Act1 and Ubi1. Gene expression in stably transformed tissue was examined by bombarding embryogenic Indica rice calli with a pUbil-gus plasmid and a plasmid containing either the selectable marker gene, hph, which confers hygromycin resistance, or bar, which confers resistance to the herbicide phosphinothricin (BASTA) each under the control of the CaMV 35S, Emu, Act1 or the Ubi1 promoters. The bombarded calli were placed on the appropriate selection media and stained for GUS activity at 1 day, 3 weeks and 5 weeks after shooting. Callus bombarded with the pUbi1-hph or the pEmu-hph constructs gave a dramatic increase in the size of the GUS staining areas with time. No such increase in the size of GUS staining areas was observed in calli co-bombarded with pUbi1-gus and any of the bar containing constructs. Co-bombardment of calli with either the pEmu-hph or pUbi1-hph construct and a virus minor coat protein (cp) gene construct resulted in many fertile transgenic Indica rice plants, containing one to eight copies of both the hph and cp genes. These genes were stably inherited by the T 1 generation.
Resumo:
The expression patterns of GUS fusion constructs driven by the Agrobacterium rhizogenes RolC and the maize Sh (Shrunken: sucrose synthase-1) promoters were examined in transgenic potatoes (cv. Atlantic). RolC drove high-level gene expression in phloem tissue, bundle sheath cells and vascular parenchyma, but not in xylem or non-vascular tissues. Sh expression was exclusively confined to phloem tissue. Potato leafroll luteovirus (PLRV) replicates only in phloem tissues, and we show that when RolC is used to drive expression of the PLRV coat protein gene, virus-resistant lines can be obtained. In contrast, no significant resistance was observed when the Sh promoter was used.