45 resultados para citric pulp
Resumo:
Sweden’s protest against the Vietnam War was given tangible form in 1969 through the decision to give economic aid to the Government of North Vietnam. The main outcome was an integrated pulp and paper mill in the Vinh Phu Province north-west of Hanoi. Known as Bai Bang after its location, the mill became the most costly, one of the longest lasting and the most controversial project in the history of Swedish development cooperation. In 1996 Bai Bang produced at its full capacity. Today the mill is exclusively managed and staffed by the Vietnamese and there are plans for future expansion. At the same time a substantial amount of money has been spent to reach these achievements. Looking back at the cumbersome history of the project the results are against many’s expectations. To learn more about the conditions for sustainable development Sida commissioned two studies of the Bai Bang project. Together they touch upon several important issues in development cooperation over a period of almost 30 years: the change of aid paradigms over time, the role of foreign policy in development cooperation, cultural obstacles, recipient responsibility versus donor led development etc. The two studies were commissioned by Sida’s Department for Evaluation and Internal Audit which is an independent department reporting directly to Sida’s Board of Directors. One study assesses the financial and economic viability of the pulp and paper mill and the broader development impact of the project in Vietnam. It has been carried out by the Centre for International Economics, an Australian private economic research agency. The other study analyses the decision-making processes that created and shaped the project over a period of two decades, and reflects on lessons from the project for development cooperation in general. This study has been carried out by the Chr. Michelsen Institute, a Norweigan independent research institution.
Resumo:
Introduction. Stem cells are regularly cultured under normoxic conditions. However, the physiological oxygen tension in the stem cell niche is known to be as low as 1-2% oxygen, suggesting that hypoxia has a distinct impact on stem cell maintenance. Periodontal ligament cells (PDLCs) and dental pulp cells (DPCs) are attractive candidates in dental tissue regeneration. It is of great interest to know whether hypoxia plays a role in maintaining the stemness and differentiation capacity of PDLCs and DPCs. Methods. PDLCs and DPCs were cultured either in normoxia (20% O2) or hypoxia (2% O2). Cell viability assays were performed and the expressions of pluripotency markers (Oct-4, Sox2, and c-Myc) were detected by qRT-PCR and western blotting. Mineralization, glycosaminoglycan (GAG) deposition, and lipid droplets formation were assessed by Alizarin red S, Safranin O, and Oil red O staining, respectively. Results. Hypoxia did not show negative effects on the proliferation of PDLCs and DPCs. The pluripotency markers and differentiation potentials of PDLCs and DPCs significantly increased in response to hypoxic environment. Conclusions. Our findings suggest that hypoxia plays an important role in maintaining the stemness and differentiation capacity of PDLCs and DPCs.
Resumo:
Numerous crops grow in sugar regions that have the potential to increase the amount of biomass available to a small bagasse-based pulp factory. Arundo donax and Sorghum offer unique advantages to farmers compared to other agricultural crops. Sorghum bicolour requires only 1/3 of the water of sugarcane. Arundo donax is a very high yield crop, it can also grow with little water but it has the further advantage in that it is also highly stress tolerant, making it suitable for land which is unsuited to other crops. Pulps produced from these crops were benchmarked against sugarcane bagasse pulp. Arundo, sorghum and bagasse were pulped using KOH and anthraquinone to 20 Kappa number so as to produce a bleachable pulp which is suitable for making photocopier paper and tissue products. The unbleached sorghum pulp has better tensile strength properties than the unbleached Arundo pulp (43.8 Nm/g compared to 21.4 Nm/g) and the bleached sorghum pulp tensile strength was similar to bagasse (28.4 Nm/g). At 20 Kappa number, sorghum pulp had acceptable yield for a non-wood fibre (45% c.f. 55% for bagasse), Arundo donax pulp had low tensile strength, and relatively low yield (38.7%), even for an agricultural fibre and required severe cooking conditions to achieve similar delignification to sugarcane bagasse or sorghum. Sorghum and Arundo donax produced thicker handsheets than bagasse (>160 µm c.f. 122 µm for bagasse). In preliminary experiments sorghum and bagasse responded slightly better to Totally Chlorine Free peroxide bleaching (QPP), although none achieved a satisfactory brightness level and further improvement would be required to produce a bleached pulp.
Resumo:
This investigation used a combination of techniques, such as X-ray diffraction, inductively coupled plasma optical emission spectroscopy and infrared spectroscopy, to determine the dissolution mechanisms of the Bayer precipitate and the associated rate of dissolution in acetic, citric and oxalic acid environments. The Bayer precipitate is a mixture of hydrotalcite, calcium carbonate and sodium chloride that forms during the seawater neutralisation of Bayer liquors (waste residue of the alumina industry). The dissolution rate of a Bayer precipitate is found to be dependent on (1) the strength of the organic acid and (2) the number of donating H+ ions. The dissolution mechanism for a Bayer precipitate consists of several steps involving: (1) the dissolution of CaCO3, (2) formation of whewellite (calcium oxalate) when oxalic acid is used and (3) multiple dissolution steps for hydrotalcite that are highly dependent on the pH of solution. The decomposition of the Al–OH hydrotalcite layers resulted in the immediate formation of Al(OH)3, which is stable until the pH decreases below 5.5. This investigation has found that the Bayer precipitate is stable across a wide pH range in the presence of common organic acids found in the rhizosphere, and that initial decomposition steps are likely to be beneficial in supporting plant growth through the release of nutrients such as Ca2þ and Mg2þ.
Resumo:
Background Regenerative endodontics is an innovative treatment concept aiming to regenerate pulp, dentin and root structures. In the diseased or necrotic tooth, the limitation in vascular supply renders successful tissue regeneration/generation in a whole tooth challenging. The aim of this study is to evaluate the ability of vascularized tissue to develop within a pulpless tooth using tissue engineering techniques. Materials and methods A pulpless tooth chamber, filled with collagen I gel containing isolated rat dental pulp cells (DPC) and angiogenic growth factors, was placed into a hole created in the femoral cortex or into its own tooth socket, respectively. The gross, histological and biochemical characteristics of the de novo tissue were evaluated at 4 and 8weeks post-transplantation. Results Tooth revascularization and tissue generation was observed only in the femur group, confirming the important role of vascular supply in tissue regeneration. The addition of cells and growth factors significantly promoted connective tissue production in the tooth chamber. Conclusion Successful revascularization and tissue regeneration in this model demonstrate the importance of a direct vascular supply and the advantages of a stem cell approach. © 2012 John Wiley & Sons A/S.
Resumo:
Corporate social responsibility is imperative for manufacturing companies to achieve sustainable development. Under a strong environmental information disclosure system, polluting companies are disadvantaged in terms of market competitiveness, because they lack an environmentally friendly image. The objective of this study is to analyze productive inefficiency change in relation to toxic chemical substance emissions for the United States and Japan and their corresponding policies. We apply the weighted Russell directional distance model to measure companies productive inefficiency, which represents their production technology. The data encompass 330 US manufacturing firms observed from 1999 to 2007, and 466 Japanese manufacturing firms observed from 2001 to 2008. The article focuses on nine high-pollution industries (rubber and plastics; chemicals and allied products; paper and pulp; steel and non-ferrous metal; fabricated metal; industrial machinery; electrical products; transportation equipment; precision instruments) categorized into two industry groups: basic materials industries and processing and assembly industries. The results show that productive inefficiency decreased in all industrial sectors in the United States and Japan from 2001 to 2007. In particular, that of the electrical products industry decreased rapidly after 2002 for both countries, possibly because of the enforcement of strict environmental regulations for electrical products exported to European markets.
Resumo:
This study analyzed the relationship between the CO2 emissions of different industries and economic growth in OECD countries from 1970 to 2005. We tested an environmental Kuznets curve (EKC) hypothesis and found that total CO2 emissions from nine industries show an N-shaped trend instead of an inverted U or monotonic increasing trend with increasing income. The EKC hypothesis for sector-level CO2 emissions was supported in the (1) paper, pulp, and printing industry; (2) wood and wood products industry; and (3) construction industry. We also found that emissions from coal and oil increase with economic growth in the steel and construction industries. In addition, the non-metallic minerals, machinery, and transport equipment industries tend to have increased emissions from oil and electricity with economic growth. Finally, the EKC turning point and the relationship between GDP per capita and sectoral CO2 emissions differ among industries according to the fuel type used. Therefore, environmental policies for CO2 reduction must consider these differences in industrial characteristics. © 2013 Elsevier Ltd.
Resumo:
Synthesis of imines from amines and aliphatic alcohols (C1–C6) in the presence of base on supported palladium nanoparticles has been achieved for the first time. The catalytic system shows high activity and selectivity in open air at room temperature. As an example of the isostructural Ln3Sb3Co2O14 (Ln: La, Pr, Nd, Sm—Ho) series with an ordered pyrochlore structure, the La variant is prepared by a citrate complex method employing stoichiometric amounts of La(NO3)3, Co(NO3)2, and Sb tartrate together with citric acid with a metal/citrate molar ratio of 1:2
Resumo:
The drying of grapes is a more complex process compared to the dehydration of other agricultural materials due to the necessity of a pretreatment operation prior to drying. Grape drying to produce raisins is a very slow process, due to the peculiar structure of grape peel, that is covered by a waxy layer.Its removal has benn so far carried out by using several chemical pre-treatments. However, they cause heterogeneity in the waxes removal and create microscopic cracks. In this paper an abrasive pretreatment for enhancing the drying rate and preserving the grape samples is proposed. Two cultivars of grape were investigated: Regina white grape and Red Globe red grape. The drying kinetics of untreated and treated samples were studied using a convective oven at 50 C. Fruit quality parameters such as sugar and organic acid contents, shrinkage, texture, peel damage (i.e. by SEM analysis) and rehydration capacity were studied to evaluate the effectiveness of abrasive pretreatment on raisins. Abrasive pretreatment contributed to reduce drying time and rehydration time. The treated and untreated dried grapes were significantly different (p<0.05) in sugar and in tartaric acid content. On the contrary, no significant differences (p<0.05) in malic and citric acids in texture peoperties between untreated and treated samples were observed.
Resumo:
Introduction Sphingosine-1-phosphate receptor 1 (S1P1) is crucial for regulation of immunity and bone metabolism. This study aimed to investigate the expression of S1P1 in rat periapical lesions and its relationship with receptor activator of nuclear factor kappa B ligand (RANKL) and regulatory T (Treg) cells. Methods Periapical lesions were induced by pulp exposure in the first lower molars of 55 Wistar rats. Thirty rats were killed on days 0, 7, 14, 21, 28, and 35, and their mandibles were harvested for x-ray imaging, micro–computed tomography scanning, histologic observation, immunohistochemistry, enzyme histochemistry, and double immunofluorescence analysis. The remaining 25 rats were killed on days 0, 14, 21, 28, and 35, and mandibles were harvested for flow cytometry. Results The volume and area of the periapical lesions increased from day 0 to day 21 and then remained comparably stable after day 28. S1P1-positive cells were observed in the inflammatory periapical regions; the number of S1P1-positive cells peaked at day 14 and then decreased from day 21 to day 35. The distribution of S1P1-positive cells was positively correlated with the dynamics of RANKL-positive cells but was negatively correlated with that of Treg cells. Conclusions S1P1 expression was differentially correlated with RANKL and Treg cell infiltration in the periapical lesions and is therefore a contributing factor to the pathogenesis of such lesions.
Resumo:
The secretive 2011 Anti-Counterfeiting Trade Agreement – known in short by the catchy acronym ACTA – is a controversial trade pact designed to provide for stronger enforcement of intellectual property rights. The preamble to the treaty reads like pulp fiction – it raises moral panics about piracy, counterfeiting, organised crime, and border security. The agreement contains provisions on civil remedies and criminal offences; copyright law and trademark law; the regulation of the digital environment; and border measures. Memorably, Susan Sell called the international treaty a TRIPS Double-Plus Agreement, because its obligations far exceed those of the World Trade Organization's TRIPS Agreement 1994, and TRIPS-Plus Agreements, such as the Australia-United States Free Trade Agreement 2004. ACTA lacks the language of other international intellectual property agreements, which emphasise the need to balance the protection of intellectual property owners with the wider public interest in access to medicines, human development, and transfer of knowledge and technology. In Australia, there was much controversy both about the form and the substance of ACTA. While the Department of Foreign Affairs and Trade was a partisan supporter of the agreement, a wide range of stakeholders were openly critical. After holding hearings and taking note of the position of the European Parliament and the controversy in the United States, the Joint Standing Committee on Treaties in the Australian Parliament recommended the deferral of ratification of ACTA. This was striking as representatives of all the main parties agreed on the recommendation. The committee was concerned about the lack of transparency, due process, public participation, and substantive analysis of the treaty. There were also reservations about the ambiguity of the treaty text, and its potential implications for the digital economy, innovation and competition, plain packaging of tobacco products, and access to essential medicines. The treaty has provoked much soul-searching as to whether the Trick or Treaty reforms on the international treaty-making process in Australia have been compromised or undermined. Although ACTA stalled in the Australian Parliament, the debate over it is yet to conclude. There have been concerns in Australia and elsewhere that ACTA will be revived as a ‘zombie agreement’. Indeed, in March 2013, the Canadian government introduced a bill to ensure compliance with ACTA. Will it be also resurrected in Australia? Has it already been revived? There are three possibilities. First, the Australian government passed enhanced remedies with respect to piracy, counterfeiting and border measures in a separate piece of legislation – the Intellectual Property Laws Amendment (Raising the Bar) Act 2012 (Cth). Second, the Department of Foreign Affairs and Trade remains supportive of ACTA. It is possible, after further analysis, that the next Australian Parliament – to be elected in September 2013 – will ratify the treaty. Third, Australia is involved in the Trans-Pacific Partnership negotiations. The government has argued that ACTA should be a template for the Intellectual Property Chapter in the Trans-Pacific Partnership. The United States Trade Representative would prefer a regime even stronger than ACTA. This chapter provides a portrait of the Australian debate over ACTA. It is the account of an interested participant in the policy proceedings. This chapter will first consider the deliberations and recommendations of the Joint Standing Committee on Treaties on ACTA. Second, there was a concern that ACTA had failed to provide appropriate safeguards with respect to civil liberties, human rights, consumer protection and privacy laws. Third, there was a concern about the lack of balance in the treaty’s copyright measures; the definition of piracy is overbroad; the suite of civil remedies, criminal offences and border measures is excessive; and there is a lack of suitable protection for copyright exceptions, limitations and remedies. Fourth, there was a worry that the provisions on trademark law, intermediary liability and counterfeiting could have an adverse impact upon consumer interests, competition policy and innovation in the digital economy. Fifth, there was significant debate about the impact of ACTA on pharmaceutical drugs, access to essential medicines and health-care. Sixth, there was concern over the lobbying by tobacco industries for ACTA – particularly given Australia’s leadership on tobacco control and the plain packaging of tobacco products. Seventh, there were concerns about the operation of border measures in ACTA. Eighth, the Joint Standing Committee on Treaties was concerned about the jurisdiction of the ACTA Committee, and the treaty’s protean nature. Finally, the chapter raises fundamental issues about the relationship between the executive and the Australian Parliament with respect to treaty-making. There is a need to reconsider the efficacy of the Trick or Treaty reforms passed by the Australian Parliament in the 1990s.
Resumo:
A simple and rapid method of analysis for mercury ions (Hg2+) and cysteine (Cys) was developed with the use of graphene quantum dots (GQDs) as a fluorescent probe. In the presence of GQDs, Hg2+ cations are absorbed on their negatively charged surface by means of electrostatic interactions. Thus, the fluorescence (FL) of the GQDs would be significantly quenched as a result of the FL charge transfer, e.g. 92% quenching at 450 nm occurs for a 5 μmol L−1 Hg2+ solution. However, when Cys was added, a significant FL enhancement was observed (510% at 450 nm for a 8.0 μmol L−1 Cys solution), and Hg2+ combined with Cys rather than with the GQDs in an aqueous solution. This occurred because a strong metalsingle bondthiol bond formed, displacing the weak electrostatic interactions, and this resulted in an FL enhancement of the GQDs. The limits of detection (LOD) for Hg2+ and Cys were 0.439 nmol L−1 and 4.5 nmol L−1, respectively. Also, this method was used successfully to analyze Hg2+ and Cys in spiked water samples.
Resumo:
A novel, highly selective resonance light scattering (RLS) method was researched and developed for the analysis of phenol in different types of industrial water. An important aspect of the method involved the use of graphene quantum dots (GQDs), which were initially obtained from the pyrolysis of citric acid dissolved in aqueous solutions. The GQDs in the presence of horseradish peroxidase (HRP) and H2O2 were found to react quantitatively with phenol such that the RLS spectral band (310 nm) was quantitatively enhanced as a consequence of the interaction between the GQDs and the quinone formed in the above reaction. It was demonstrated that the novel analytical method had better selectivity and sensitivity for the determination of phenol in water as compared to other analytical methods found in the literature. Thus, trace amounts of phenol were detected over the linear ranges of 6.00×10−8–2.16×10−6 M and 2.40×10−6–2.88×10−5 M with a detection limit of 2.20×10−8 M. In addition, three different spiked waste water samples and two untreated lake water samples were analysed for phenol. Satisfactory results were obtained with the use of the novel, sensitive and rapid RLS method.
Resumo:
An efficient method for the analysis of hydroquinone at trace levels in water samples has been developed in the form of a fluorescent probe based on graphene quantum dots (GQDs). The analytical variable, fluorescence quenching, was generated from the formation of benzoquinone intermediates, which formed during the catalytic oxidation of hydroquinone by horseradish peroxidase (HRP). In general, the reaction mechanism involved hydroquinone, as an electron acceptor, which affected the surface state of GQDs via an electron transfer effect. The water-soluble GQDs were directly prepared by the pyrolysis of citric acid and with the use of the mentioned hybrid enzyme system, the detection limit for hydroquinone was as low as 8.4 × 10−8 M. Furthermore, this analysis was almost unaffected by other phenol and quinine compounds, such as phenol, resorcinol and other quinines, and therefore, the developed GQD method produced satisfactory results for the analysis of hydroquinone in several different lake water samples.
Resumo:
As a key component of the ocular surface required for vision, the cornea has been extensively studied as a site for cell and tissue-based therapies. Historically, these treatments have consisted of donor corneal tissue transplants, but cultivated epithelial autografts have become established over the last 15 years as a routine treatment for ocular surface disease. Ultimately, these treatments are performed with the intention of restoring corneal transparency and a smooth ocular surface. The degree of success, however, is often dependent upon the inherent level of corneal inflammation at time of treatment. In this regard, the anti-inflammatory and immuno-modulatory properties of mesenchymal stromal cells (MSC) have drawn attention to these cells as potential therapeutic agents for corneal repair. The origins for MSC-based therapies are founded in part on observations of the recruitment of endogenous bone marrow-derived cells to injured corneas, however, an increasing quantity of data is emerging for MSC administered following their isolation and ex vivo expansion from a variety of tissues including bone marrow, adipose tissue, umbilical cord and dental pulp. In brief, evidence has emerged of cultured MSC, or their secreted products, having a positive impact on corneal wound healing and retention of corneal allografts in animal models. Optimal dosage, route of administration and timing of treatment, however, all remain active areas of investigation. Intriguingly, amidst these studies, have emerged reports of MSC transdifferentiation into corneal cells. Clearest evidence has been obtained with respect to expression of markers associated with the phenotype of corneal stromal cells. In contrast, the evidence for MSC conversion to corneal epithelial cell types remains inconclusive. In any case, the conversion of MSC into corneal cells seems unlikely to be an essential requirement for their clinical use. This field of research has recently become more complicated by reports of MSC-like properties for cultures established from the peripheral corneal stroma (limbal stroma). The relationship and relative value of corneal-MSC compared to traditional sources of MSC such as bone marrow are at present unclear. This chapter is divided into four main parts. After providing a concise overview of corneal structure and function, we will highlight the types of corneal diseases that are likely to benefit from the anti-inflammatory and immuno-modulatory properties of MSC. We will subsequently summarize the evidence supporting the case for MSC-based therapies in the treatment of corneal diseases. In the third section we will review the literature concerning the keratogenic potential of MSC. Finally, we will review the more recent literature indicating the presence of MSC-like cells derived from corneal tissue.