41 resultados para agrobacterium rhizogenes
Resumo:
Rice ragged stunt virus (RRSV) is an important pathogen of rice affecting its cultivation in South and South East Asia. An approach based on pathogen derived resistance (PDR) was used to produce RRSV resistant rice cultivars. Sequences from the coding region of RRSV genome segments 7 and 10 (non-structural genes), and 5, 8 and 9 (structural genes) were placed in sense or antisense orientation behind the plant expression promoters CaMV35S, RolC, Ubil, Actl and RBTV. Rice cultivars Taipei 309 and Chinsurah Boro II were transformed by biolistic and/or Agrobacterium-mediated delivery of one or more of these PDR gene constructs. A large number of transgenic lines were produced from calli derived from mature or immature embryos, co-bombarded with the marker gene hph encoding hygromycin resistance and RRSV PDR genes or co-cultivated with strains having the binary vector containing these two genes. Both Mendelian and non-Mendelian segregations were observed in transgenic progeny, especially with transgenic lines produced by biolistics. Preliminary tests conducted in China on selected transgenic lines indicate that plants with RRSV segment 5 antisense PDR gene confer RRSV resistance.
Resumo:
Genetic studies are revealing the pathway for RNA-mediated gene silencing. Short RNA molecules are the key, giving sequence specificity for RNA degradation and mediating communication within and between cells; these short RNAs are common to transcriptional and post-transcriptional silencing pathways. The expression of transgenes in plants varies between independent transformants and there are many examples where the transgenic trait is not expressed, or disappears in subsequent generations, despite the presence of the transgene. This loss of a trait, but not of the transgene, has become known as gene silencing and can take two forms, transcriptional or post-transcriptional. As their names imply, transcriptional gene silencing occurs when a transgene is not transcribed, whereas in post-transcriptional gene silencing, the transgene mRNA is produced but degraded before it is translated (reviewed in [1]). Both forms of silencing seem to be the result of inherent mechanisms for protecting plants against mobile or invading DNA — for example, transposable elements or the T-DNA of Agrobacterium — or RNA viruses. Plants are not alone in their capacity for transgene silencing; both forms of silencing occur in flies and fungi, where it is known as RIP or quelling, while nematodes exhibit post-transcriptional silencing, generally referred to as RNA interference (RNAi). A clearer picture of the mechanisms and relationships of the different types of transgene silencing is beginning to emerge from a number of recent studies [2], [3], [4], [5], [6], [7] and [8]. Some of these studies [2], [3], [4] and [5] have enhanced our understanding of the steps within the post-transcriptional silencing pathway, and others [6], [7] and [8] have demonstrated that the two forms of silencing may be mechanistically linked.
Resumo:
Plants transformed with Agrobacterium frequently contain T-DNA concatamers with direct-repeat (d/r) or inverted-repeat (i/r) transgene integrations, and these repetitive T-DNA insertions are often associated with transgene silencing. To facilitate the selection of transgenic lines with simple T-DNA insertions, we constructed a binary vector (pSIV) based on the principle of hairpin RNA (hpRNA)-induced gene silencing. The vector is designed so that any transformed cells that contain more than one insertion per locus should generate hpRNA against the selective marker gene, leading to its silencing. These cells should, therefore, be sensitive to the selective agent and less likely to regenerate. Results from Arabidopsis and tobacco transformation showed that pSIV gave considerably fewer transgenic lines with repetitive insertions than did a conventional T-DNA vector (pCON). Furthermore, the transgene was more stably expressed in the pSIV plants than in the pCON plants. Rescue of plant DNA flanking sequences from pSIV plants was significantly more frequent than from pCON plants, suggesting that pSIV is potentially useful for T-DNA tagging. Our results revealed a perfect correlation between the presence of tail-to-tail inverted repeats and transgene silencing, supporting the view that read-through hpRNA transcript derived from i/r T-DNA insertions is a primary inducer of transgene silencing in plants. © CSIRO 2005.
Resumo:
Sugar cane is a major source of food and fuel worldwide. Biotechnology has the potential to improve economically-important traits in sugar cane as well as diversify sugar cane beyond traditional applications such as sucrose production. High levels of transgene expression are key to the success of improving crops through biotechnology. Here we describe new molecular tools that both expand and improve gene expression capabilities in sugar cane. We have identified promoters that can be used to drive high levels of gene expression in the leaf and stem of transgenic sugar cane. One of these promoters, derived from the Cestrum yellow leaf curling virus, drives levels of constitutive transgene expression that are significantly higher than those achieved by the historical benchmark maize polyubiquitin-1 (Zm-Ubi1) promoter. A second promoter, the maize phosphonenolpyruvate carboxylate promoter, was found to be a strong, leaf-preferred promoter that enables levels of expression comparable to Zm-Ubi1 in this organ. Transgene expression was increased approximately 50-fold by gene modification, which included optimising the codon usage of the coding sequence to better suit sugar cane. We also describe a novel dual transcriptional enhancer that increased gene expression from different promoters, boosting expression from Zm-Ubi1 over eightfold. These molecular tools will be extremely valuable for the improvement of sugar cane through biotechnology.
Resumo:
Programmed cell death-associated genes, especially antiapoptosis-related genes have been reported to confer tolerance to a wide range of biotic and abiotic stresses in dicotyledonous plants such as tobacco (Nicotiana tabacum L.) and tomato (Solanum lycopersicum L.). This is the first time the antiapoptotic gene SfIAP was transformed into a monocotyledonous representative: rice (Oryza sativa L.). Transgenic rice strains expressing SfIAP were generated by the Agrobacterium-mediated transformation method and rice embryogenic calli, and assessed for their ability to confer tolerance to salt stress at both the seedling and reproductive stages using a combination of molecular, agronomical, physiological and biochemical techniques. The results show that plants expressing SfIAP have higher salt tolerance levels in comparison to the wild-type and vector controls. By preventing cell death at the onset of salt stress and maintaining the cell membrane’s integrity, SfIAP transgenic rice plants can retain plant water status, ion homeostasis, photosynthetic efficiency and growth to combat salinity successfully.
Resumo:
Transient expression is a powerful method for the functional characterization of genes. In this chapter, we outline a protocol for the transient expression of constructs in Medicago truncatula leaves using Agrobacterium tumefaciens infiltration. Using quantitative real-time PCR we demonstrate that the infiltration of a construct containing the LEGUME ANTHOCYANIN PRODUCTION 1 (LAP1) transcription factor results in the strong upregulation of key biosynthetic genes and the accumulation of anthocyanin pigment in the leaves after just 3 days. Thus, this method provides a rapid and powerful way to the discovery of downstream targets of M. truncatula transcription factors.
Resumo:
Background Red colour in kiwifruit results from the presence of anthocyanin pigments. Their expression, however, is complex, and varies among genotypes, species, tissues and environments. An understanding of the biosynthesis, physiology and genetics of the anthocyanins involved, and the control of their expression in different tissues, is required. A complex, the MBW complex, consisting of R2R3-MYB and bHLH transcription factors together with a WD-repeat protein, activates anthocyanin 3-O-galactosyltransferase (F3GT1) to produce anthocyanins. We examined the expression and genetic control of anthocyanins in flowers of Actinidia hybrid families segregating for red and white petal colour. Results Four inter-related backcross families between Actinidia chinensis Planch. var. chinensis and Actinidia eriantha Benth. were identified that segregated 1:1 for red or white petal colour. Flower pigments consisted of five known anthocyanins (two delphinidin-based and three cyanidin-based) and three unknowns. Intensity and hue differed in red petals from pale pink to deep magenta, and while intensity of colour increased with total concentration of anthocyanin, no association was found between any particular anthocyanin data and hue. Real time qPCR demonstrated that an R2R3 MYB, MYB110a, was expressed at significant levels in red-petalled progeny, but not in individuals with white petals. A microsatellite marker was developed that identified alleles that segregated with red petal colour, but not with ovary, stamen filament, or fruit flesh colour in these families. The marker mapped to chromosome 10 in Actinidia. The white petal phenotype was complemented by syringing Agrobacterium tumefaciens carrying Actinidia 35S::MYB110a into the petal tissue. Red pigments developed in white petals both with, and without, co-transformation with Actinidia bHLH partners. MYB110a was shown to directly activate Actinidia F3GT1 in transient assays. Conclusions The transcription factor, MYB110a, regulates anthocyanin production in petals in this hybrid population, but not in other flower tissues or mature fruit. The identification of delphinidin-based anthocyanins in these flowers provides candidates for colour enhancement in novel fruits.
Resumo:
Background We describe novel plasmid vectors for transient gene expression using Agrobacterium, infiltrated into Nicotiana benthamiana leaves. We have generated a series of pGreenII cloning vectors that are ideally suited to transient gene expression, by removing elements of conventional binary vectors necessary for stable transformation such as transformation selection genes. Results We give an example of expression of heme-thiolate P450 to demonstrate effectiveness of this system. We have also designed vectors that take advantage of a dual luciferase assay system to analyse promoter sequences or post-transcriptional regulation of gene expression. We have demonstrated their utility by co-expression of putative transcription factors and the promoter sequence of potential target genes and show how orthologous promoter sequences respond to these genes. Finally, we have constructed a vector that has allowed us to investigate design features of hairpin constructs related to their ability to initiate RNA silencing, and have used these tools to study cis-regulatory effect of intron-containing gene constructs. Conclusion In developing a series of vectors ideally suited to transient expression analysis we have provided a resource that further advances the application of this technology. These minimal vectors are ideally suited to conventional cloning methods and we have used them to demonstrate their flexibility to investigate enzyme activity, transcription regulation and post-transcriptional regulatory processes in transient assays.
Resumo:
Salinity is a major threat to sustainable agriculture worldwide. Plant NHX exchangers play an important role in conferring salt tolerance under salinity stress. In this study, a vacuolar Na+/H+ antiporter gene VrNHX1 (Genbank Accession No. JN656211.1) from mungbean (Vigna radiata) was introduced into cowpea (Vigna unguiculata) by the Agrobacterium tumefaciens-mediated transformation method. Polymerase chain reaction and Southern blot hybridization confirmed the stable integration of VrNHX1 into the cowpea genome. Comparative expression analysis by semi-quantitative RT-PCR revealed higher expression of VrNHX1 in transgenic cowpea plants than wild-type. Under salt stress conditions, T2 transgenic 35S:VrNHX1 cowpea lines exhibited higher tolerance to 200 mM NaCl treatment than wild-type. Furthermore, T2 transgenic 35S:VrNHX1 lines maintained a higher K+/Na+ ratio in the aerial parts under salt stress and accumulated higher [Na+] in roots than wild-type. Physiological analysis revealed lower levels of lipid peroxidation, hydrogen peroxide and oxygen radical production but higher levels of relative water content and proline, ascorbate and chlorophyll contents in T2 transgenic 35S:VrNHX1 lines.
Resumo:
Plants are an attractive alternative to conventional expression systems for the production of recombinant proteins and useful biologics, however, the economic viability of plant made proteins is strongly yield dependent. This study aimed to improve transgene expression levels in the plant host Nicotiana benthamiana using the Agroinfiltration transient expression platform. Independent investigation of the physical, chemical and genetic features associated with Agroinfiltration identified factors that improved transformation frequencies, elevated transgene expression levels and ultimately improved protein yield. The major outcome of this research was a novel hyper-expression system for biofarming recombinant proteins in plants.
Green-fluorescent protein facilitates rapid in vivo detection of genetically transformed plant cells
Resumo:
Early detection of plant transformation events is necessary for the rapid establishment and optimization of plant transformation protocols. We have assessed modified versions of the green fluorescent protein (GFP) from Aequorea victoria as early reporters of plant transformation using a dissecting fluorescence microscope with appropriate filters. Gfp-expressing cells from four different plant species (sugarcane, maize, lettuce, and tobacco) were readily distinguished, following either Agrobacterium-mediated or particle bombardment-mediated transformation. The identification of gfp-expressing sugarcane cells allowed for the elimination of a high proportion of non-expressing explants and also enabled visual selection of dividing transgenic cells, an early step in the generation of transgenic organisms. The recovery of transgenic cell clusters was streamlined by the ability to visualize gfp-expressing tissues in vitro.