81 resultados para Stereo photometry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mining environment, being complex, irregular and time varying, presents a challenging prospect for stereo vision. For this application, speed, reliability, and the ability to produce a dense depth map are of foremost importance. This paper evaluates a number of matching techniques for possible use in a stereo vision sensor for mining automation applications. Area-based techniques have been investigated because they have the potential to yield dense maps, are amenable to fast hardware implementation, and are suited to textured scenes. In addition, two non-parametric transforms, namely, the rank and census, have been investigated. Matching algorithms using these transforms were found to have a number of clear advantages, including reliability in the presence of radiometric distortion, low computational complexity, and amenability to hardware implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors present a qualitative and quantitative comparison of various similarity measures that form the kernel of common area-based stereo-matching systems. The authors compare classical difference and correlation measures as well as nonparametric measures based on the rank and census transforms for a number of outdoor images. For robotic applications, important considerations include robustness to image defects such as intensity variation and noise, the number of false matches, and computational complexity. In the absence of ground truth data, the authors compare the matching techniques based on the percentage of matches that pass the left-right consistency test. The authors also evaluate the discriminatory power of several match validity measures that are reported in the literature for eliminating false matches and for estimating match confidence. For guidance applications, it is essential to have and estimate of confidence in the three-dimensional points generated by stereo vision. Finally, a new validity measure, the rank constraint, is introduced that is capable of resolving ambiguous matches for rank transform-based matching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stereo-based visual odometry algorithms are heavily dependent on an accurate calibration of the rigidly fixed stereo pair. Even small shifts in the rigid transform between the cameras can impact on feature matching and 3D scene triangulation, adversely affecting pose estimates and applications dependent on long-term autonomy. In many field-based scenarios where vibration, knocks and pressure change affect a robotic vehicle, maintaining an accurate stereo calibration cannot be guaranteed over long periods. This paper presents a novel method of recalibrating overlapping stereo camera rigs from online visual data while simultaneously providing an up-to-date and up-to-scale pose estimate. The proposed technique implements a novel form of partitioned bundle adjustment that explicitly includes the homogeneous transform between a stereo camera pair to generate an optimal calibration. Pose estimates are computed in parallel to the calibration, providing online recalibration which seamlessly integrates into a stereo visual odometry framework. We present results demonstrating accurate performance of the algorithm on both simulated scenarios and real data gathered from a wide-baseline stereo pair on a ground vehicle traversing urban roads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stereo visual odometry has received little investigation in high altitude applications due to the generally poor performance of rigid stereo rigs at extremely small baseline-to-depth ratios. Without additional sensing, metric scale is considered lost and odometry is seen as effective only for monocular perspectives. This paper presents a novel modification to stereo based visual odometry that allows accurate, metric pose estimation from high altitudes, even in the presence of poor calibration and without additional sensor inputs. By relaxing the (typically fixed) stereo transform during bundle adjustment and reducing the dependence on the fixed geometry for triangulation, metrically scaled visual odometry can be obtained in situations where high altitude and structural deformation from vibration would cause traditional algorithms to fail. This is achieved through the use of a novel constrained bundle adjustment routine and accurately scaled pose initializer. We present visual odometry results demonstrating the technique on a short-baseline stereo pair inside a fixed-wing UAV flying at significant height (~30-100m).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Achieving a robust, accurately scaled pose estimate in long-range stereo presents significant challenges. For large scene depths, triangulation from a single stereo pair is inadequate and noisy. Additionally, vibration and flexible rigs in airborne applications mean accurate calibrations are often compromised. This paper presents a technique for accurately initializing a long-range stereo VO algorithm at large scene depth, with accurate scale, without explicitly computing structure from rigidly fixed camera pairs. By performing a monocular pose estimate over a window of frames from a single camera, followed by adding the secondary camera frames in a modified bundle adjustment, an accurate, metrically scaled pose estimate can be found. To achieve this the scale of the stereo pair is included in the optimization as an additional parameter. Results are presented both on simulated and field gathered data from a fixed-wing UAV flying at significant altitude, where the epipolar geometry is inaccurate due to structural deformation and triangulation from a single pair is insufficient. Comparisons are made with more conventional VO techniques where the scale is not explicitly optimized, and demonstrated over repeated trials to indicate robustness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a simple activity for plotting and characterising the light curve from an exoplanet transit event by way of differential photometry analysis. Using free digital imaging software, participants analyse a series of telescope images with the goal of calculating various exoplanet parameters, including its size, orbital radius and habitability. The activity has been designed for a high-school or undergraduate university level and introduces fundamental concepts in astrophysics and an understanding of the basis for exoplanetary science, the transit method and digital photometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The along-track stereo images of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor with 15 m resolution were used to generate Digital Elevation Model (DEM) on an area with low and near Mean Sea Level (MSL) elevation in Johor, Malaysia. The absolute DEM was generated by using the Rational Polynomial Coefficient (RPC) model which was run on ENVI 4.8 software. In order to generate the absolute DEM, 60 Ground Control Pointes (GCPs) with almost vertical accuracy less than 10 meter extracted from topographic map of the study area. The assessment was carried out on uncorrected and corrected DEM by utilizing dozens of Independent Check Points (ICPs). Consequently, the uncorrected DEM showed the RMSEz of ± 26.43 meter which was decreased to the RMSEz of ± 16.49 meter for the corrected DEM after post-processing. Overall, the corrected DEM of ASTER stereo images met the expectations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aerial hawking bats use intense echolocation calls to search for insect prey. Their calls have evolved into the most intense airborne animal vocalisations. Yet our knowledge about call intensities in the field is restricted to a small number of species. We describe a novel stereo videogrammetry method used to study flight and echolocation behaviour, and to measure call source levels of the aerial hawking bat Eptesicus bottae (Vespertilionidae). Bats flew close to their predicted minimum power speed. Source level increased with call duration; the loudest call of E. bottae was at 133 dB peSPL. The calculated maximum detection distance for large flying objects (e.g. large prey, conspecifics) was up to 21 m. The corresponding maximum echo delay is almost exactly the duration of one wing beat in E. bottae and this also is its preferred pulse interval. These results, obtained by using videogrammetry to track bats in the field, corroborate earlier findings from other species from acoustic tracking methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis explored the utility of long-range stereo visual odometry for application on Unmanned Aerial Vehicles. Novel parameterisations and initialisation routines were developed for the long-range case of stereo visual odometry and new optimisation techniques were implemented to improve the robustness of visual odometry in this difficult scenario. In doing so, the applications of stereo visual odometry were expanded and shown to perform adequately in situations that were previously unworkable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vision-based underwater navigation and obstacle avoidance demands robust computer vision algorithms, particularly for operation in turbid water with reduced visibility. This paper describes a novel method for the simultaneous underwater image quality assessment, visibility enhancement and disparity computation to increase stereo range resolution under dynamic, natural lighting and turbid conditions. The technique estimates the visibility properties from a sparse 3D map of the original degraded image using a physical underwater light attenuation model. Firstly, an iterated distance-adaptive image contrast enhancement enables a dense disparity computation and visibility estimation. Secondly, using a light attenuation model for ocean water, a color corrected stereo underwater image is obtained along with a visibility distance estimate. Experimental results in shallow, naturally lit, high-turbidity coastal environments show the proposed technique improves range estimation over the original images as well as image quality and color for habitat classification. Furthermore, the recursiveness and robustness of the technique allows implementation onboard an Autonomous Underwater Vehicle for improving navigation and obstacle avoidance performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a prototype tracking system for tracking people in enclosed indoor environments where there is a high rate of occlusions. The system uses a stereo camera for acquisition, and is capable of disambiguating occlusions using a combination of depth map analysis, a two step ellipse fitting people detection process, the use of motion models and Kalman filters and a novel fit metric, based on computationally simple object statistics. Testing shows that our fit metric outperforms commonly used position based metrics and histogram based metrics, resulting in more accurate tracking of people.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To navigate successfully in a previously unexplored environment, a mobile robot must be able to estimate the spatial relationships of the objects of interest accurately. A Simultaneous Localization and Mapping (SLAM) sys- tem employs its sensors to build incrementally a map of its surroundings and to localize itself in the map simultaneously. The aim of this research project is to develop a SLAM system suitable for self propelled household lawnmowers. The proposed bearing-only SLAM system requires only an omnidirec- tional camera and some inexpensive landmarks. The main advantage of an omnidirectional camera is the panoramic view of all the landmarks in the scene. Placing landmarks in a lawn field to define the working domain is much easier and more flexible than installing the perimeter wire required by existing autonomous lawnmowers. The common approach of existing bearing-only SLAM methods relies on a motion model for predicting the robot’s pose and a sensor model for updating the pose. In the motion model, the error on the estimates of object positions is cumulated due mainly to the wheel slippage. Quantifying accu- rately the uncertainty of object positions is a fundamental requirement. In bearing-only SLAM, the Probability Density Function (PDF) of landmark position should be uniform along the observed bearing. Existing methods that approximate the PDF with a Gaussian estimation do not satisfy this uniformity requirement. This thesis introduces both geometric and proba- bilistic methods to address the above problems. The main novel contribu- tions of this thesis are: 1. A bearing-only SLAM method not requiring odometry. The proposed method relies solely on the sensor model (landmark bearings only) without relying on the motion model (odometry). The uncertainty of the estimated landmark positions depends on the vision error only, instead of the combination of both odometry and vision errors. 2. The transformation of the spatial uncertainty of objects. This thesis introduces a novel method for translating the spatial un- certainty of objects estimated from a moving frame attached to the robot into the global frame attached to the static landmarks in the environment. 3. The characterization of an improved PDF for representing landmark position in bearing-only SLAM. The proposed PDF is expressed in polar coordinates, and the marginal probability on range is constrained to be uniform. Compared to the PDF estimated from a mixture of Gaussians, the PDF developed here has far fewer parameters and can be easily adopted in a probabilistic framework, such as a particle filtering system. The main advantages of our proposed bearing-only SLAM system are its lower production cost and flexibility of use. The proposed system can be adopted in other domestic robots as well, such as vacuum cleaners or robotic toys when terrain is essentially 2D.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computer vision is much more than a technique to sense and recover environmental information from an UAV. It should play a main role regarding UAVs’ functionality because of the big amount of information that can be extracted, its possible uses and applications, and its natural connection to human driven tasks, taking into account that vision is our main interface to world understanding. Our current research’s focus lays on the development of techniques that allow UAVs to maneuver in spaces using visual information as their main input source. This task involves the creation of techniques that allow an UAV to maneuver towards features of interest whenever a GPS signal is not reliable or sufficient, e.g. when signal dropouts occur (which usually happens in urban areas, when flying through terrestrial urban canyons or when operating on remote planetary bodies), or when tracking or inspecting visual targets—including moving ones—without knowing their exact UMT coordinates. This paper also investigates visual serving control techniques that use velocity and position of suitable image features to compute the references for flight control. This paper aims to give a global view of the main aspects related to the research field of computer vision for UAVs, clustered in four main active research lines: visual serving and control, stereo-based visual navigation, image processing algorithms for detection and tracking, and visual SLAM. Finally, the results of applying these techniques in several applications are presented and discussed: this study will encompass power line inspection, mobile target tracking, stereo distance estimation, mapping and positioning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an implementation of an aircraft pose and motion estimator using visual systems as the principal sensor for controlling an Unmanned Aerial Vehicle (UAV) or as a redundant system for an Inertial Measure Unit (IMU) and gyros sensors. First, we explore the applications of the unified theory for central catadioptric cameras for attitude and heading estimation, explaining how the skyline is projected on the catadioptric image and how it is segmented and used to calculate the UAV’s attitude. Then we use appearance images to obtain a visual compass, and we calculate the relative rotation and heading of the aerial vehicle. Additionally, we show the use of a stereo system to calculate the aircraft height and to measure the UAV’s motion. Finally, we present a visual tracking system based on Fuzzy controllers working in both a UAV and a camera pan and tilt platform. Every part is tested using the UAV COLIBRI platform to validate the different approaches, which include comparison of the estimated data with the inertial values measured onboard the helicopter platform and the validation of the tracking schemes on real flights.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The following paper presents an evaluation of airborne sensors for use in vegetation management in powerline corridors. Three integral stages in the management process are addressed including, the detection of trees, relative positioning with respect to the nearest powerline and vegetation height estimation. Image data, including multi-spectral and high resolution, are analyzed along with LiDAR data captured from fixed wing aircraft. Ground truth data is then used to establish the accuracy and reliability of each sensor thus providing a quantitative comparison of sensor options. Tree detection was achieved through crown delineation using a Pulse-Coupled Neural Network (PCNN) and morphologic reconstruction applied to multi-spectral imagery. Through testing it was shown to achieve a detection rate of 96%, while the accuracy in segmenting groups of trees and single trees correctly was shown to be 75%. Relative positioning using LiDAR achieved a RMSE of 1.4m and 2.1m for cross track distance and along track position respectively, while Direct Georeferencing achieved RMSE of 3.1m in both instances. The estimation of pole and tree heights measured with LiDAR had a RMSE of 0.4m and 0.9m respectively, while Stereo Matching achieved 1.5m and 2.9m. Overall a small number of poles were missed with detection rates of 98% and 95% for LiDAR and Stereo Matching.