191 resultados para Steam power-plants
Resumo:
Fault identification in industrial machine is a topic of major importance under engineering point of view. In fact, the possibility to identify not only the type, but also the severity and the position of a fault occurred along a shaft-line allows quick maintenance and shorten the downtime. This is really important in the power generation industry where the units are often of several tenths of meters long and where the rotors are enclosed by heavy and pressure-sealed casings. In this paper, an industrial experimental case is presented related to the identification of the unbalance on a large size steam turbine of about 1.3 GW, belonging to a nuclear power plant. The case history is analyzed by considering the vibrations measured by the condition monitoring system of the unit. A model-based method in the frequency domain, developed by the authors, is introduced in detail and it is then used to identify the position of the fault and its severity along the shaft-line. The complete model of the unit (rotor – modeled by means of finite elements, bearings – modeled by linearized damping and stiffness coefficients and foundation – modeled by means of pedestals) is analyzed and discussed before being used for the fault identification. The assessment of the actual fault was done by inspection during a scheduled maintenance and excellent correspondence was found with the identified one by means of authors’ proposed method. Finally a complete discussion is presented about the effectiveness of the method, even in presence of a not fine tuned machine model and considering only few measuring planes for the machine vibration.
Resumo:
Despite ongoing controversies regarding possible directions for the nuclear plants program throughout Japan since the Fukushima disaster, little has been researched about people's belief structure about future society and what may affect their attitudes toward different policy options. Beyond policy debates, the present study focused on how people see a future society according to the assumptions of different policy options. A total of 125 students at Japanese universities were asked to compare a future society with society today in which one of alternative policies was adopted (i.e., shutdown or expansion of nuclear reactors) in terms of characteristics of individuals and society in general. While perceived dangerousness of nuclear power predicted attitudes and behavioural intentions to make personal sacrifices for nuclear power policies, beliefs about the social consequences of the policies, especially on economic development and dysfunction, appeared to play stronger roles in predicting those measures. The importance of sociological dimensions in understanding how people perceive the future of society regarding alternative nuclear power policies, and the subtle discrepancies between attitudes and behavioural intentions, are discussed.
Resumo:
Microclimate and host plant architecture significantly influence the abundance and behavior of insects. However, most research in this field has focused at the invertebrate assemblage level, with few studies at the single-species level. Using wild Solanum mauritianum plants, we evaluated the influence of plant structure (number of leaves and branches and height of plant) and microclimate (temperature, relative humidity, and light intensity) on the abundance and behavior of a single insect species, the monophagous tephritid fly Bactrocera cacuminata (Hering). Abundance and oviposition behavior were signficantly influenced by the host structure (density of foliage) and associated microclimate. Resting behavior of both sexes was influenced positively by foliage density, while temperature positively influenced the numbers of resting females. The number of ovipositing females was positively influenced by temperature and negatively by relative humidity. Feeding behavior was rare on the host plant, as was mating. The relatively low explanatory power of the measured variables suggests that, in addition to host plant architecture and associated microclimate, other cues (e.g., olfactory or visual) could affect visitation and use of the larval host plant by adult fruit flies. For 12 plants observed at dusk (the time of fly mating), mating pairs were observed on only one tree. Principal component analyses of the plant and microclimate factors associated with these plants revealed that the plant on which mating was observed had specific characteristics (intermediate light intensity, greater height, and greater quantity of fruit) that may have influenced its selection as a mating site.