45 resultados para Sowing depth


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To determine solar load-bearing structures in the feet of feral horses and investigate morphological characteristics of the sole in feral horses and domestic Thoroughbreds. Sample: Forelimbs from cadavers of 70 feral horses and 20 domestic Thoroughbreds in Australia. Procedures: Left forefeet were obtained from 3 feral horse populations from habitats of soft substrate (SS [n = 10 horses]), hard substrate (HS [10]), and a combination of SS and HS (10) and loaded in vitro. Pressure distribution was measured with a pressure plate. Sole depth was measured at 12 points across the solar plane in feet obtained from feral horses from SS (n = 20 horses) and HS (20) habitats and domestic Thoroughbreds (20). Results: Feet of feral horses from HS habitats loaded the periphery of the sole and hoof wall on a flat surface. Feral horses from HS or SS habitats had greater mean sole depth than did domestic Thoroughbreds. Sole depth was greatest peripherally and was correlated with the loading pattern. Conclusions and Clinical Relevance: The peripheral aspect of the sole in the feet of feral horses had a load-bearing function. Because of the robust nature of the tissue architecture, the hoof capsule of feral horses may be less flexible than that of typical domestic horses. The application of narrow-web horseshoes may not take full advantage of the load-bearing and force-dissipating properties of the peripheral aspect of the sole. Further studies are required to understand the effects of biomechanical stimulation on the adaptive responses of equine feet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents a segmentation pipeline that fuses colour and depth information to automatically separate objects of interest in video sequences captured from a quadcopter. Many approaches assume that cameras are static with known position, a condition which cannot be preserved in most outdoor robotic applications. In this study, the authors compute depth information and camera positions from a monocular video sequence using structure from motion and use this information as an additional cue to colour for accurate segmentation. The authors model the problem similarly to standard segmentation routines as a Markov random field and perform the segmentation using graph cuts optimisation. Manual intervention is minimised and is only required to determine pixel seeds in the first frame which are then automatically reprojected into the remaining frames of the sequence. The authors also describe an automated method to adjust the relative weights for colour and depth according to their discriminative properties in each frame. Experimental results are presented for two video sequences captured using a quadcopter. The quality of the segmentation is compared to a ground truth and other state-of-the-art methods with consistently accurate results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Nursing in the cardiac catheterisation laboratory (CCL) varies globally in terms of scope and deployment. In the US, all allied staff are cross-trained into all CCL roles. The Australian and New Zealand experience has legislative frameworks that reserves specific functions to nurses. Yet, the nursing role within the CCL is poorly researched and defined. Aim: This study sought to gain deeper understanding of the perceived role of CCL nurses in Australia and New Zealand. Method: A descriptive qualitative study using semi-structured in-depth interviews was used. A cross-sectional sample of 23 senior clinical nurses or nursing managers representing 16 CCLs across Australia and New Zealand was obtained. Data were digitally recorded and transcribed verbatim prior to analysis by three researchers. Results: Five major themes emerged from the data. These themes were: 1. The CCL is a unique environment; 2. CCL nursing is a unique and advanced cardiac nursing discipline; 3. The recruitment attributes for CCL nurses are advanced; 4. Education needs to be standardised; and 5. The evidence to support practice is poor. Discussion: The CCL environment is a dynamic, deeply interdisciplinary setting with CCL nursing seen to be a unique advanced practice role. Yet the time has come for a scope of practice, educational standards, guidelines and competencies was expressed by the participants. Conclusion: Nursing in the CCL is an advanced practice role working within a complex interdisciplinary environment. Further work is required to define the role of CCL nurses together with the evidence-base for their practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose To examine choroidal thickness (ChT) and its topographical variation across the posterior pole in myopic and non-myopic children. Methods One hundred and four children aged 10-15 years of age (mean age 13.1 ± 1.4 years) had ChT measured using enhanced depth imaging optical coherence tomography (OCT). Forty one children were myopic (mean spherical equivalent -2.4 ± 1.5 D) and 63 non-myopic (mean +0.3 ± 0.3 D). Two series of 6 radial OCT line scans centred on the fovea were assessed for each child. Subfoveal ChT and ChT across a series of parafoveal zones over the central 6mm of the posterior pole were determined through manual image segmentation. Results Subfoveal ChT was significantly thinner in myopes (mean 303 ± 79 µm) compared to non-myopes (mean 359 ± 77 µm) (p<0.0001). Multiple regression analysis revealed both refractive error (r = 0.39, p<0.001) and age (r = 0.21, p = 0.02) were positively associated with subfoveal ChT. ChT also exhibited significant topographical variations, with the choroid being thicker in more central regions. The thinnest choroid was typically observed in nasal (mean 286 ± 77 µm) and inferior-nasal (306 ± 79 µm) locations, and the thickest in superior (346 ± 79 µm) and superior-temporal (341 ± 74 µm) locations. The difference in ChT between myopic and non-myopic children was significantly greater in central foveal regions compared to more peripheral regions (>3 mm diameter) (p<0.001). Conclusions Myopic children have significantly thinner choroids compared to non-myopic children of similar age, particularly in central foveal regions. The magnitude of difference in choroidal thickness associated with myopia appears greater than would be predicted by a simple passive choroidal thinning with axial elongation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of crack depth (a/W) and specimen width W on the fracture toughness and ductile±brittle transition have been investigated using three-point bend specimens. Finite element analysis is employed to obtain the stress-strain fields ahead of the crack tip. The results show that both normalized crack depth (a/W) and specimen width (W) affect the fracture toughness and ductile±brittle fracture transition. The measured crack tip opening displacement decreases and ductile±brittle transition occurs with increasing crack depth (a/W) from 0.1 to 0.2 and 0.3. At a fixed a/W (0.2 or 0.3), all specimens fail by cleavage prior to ductile tearing when specimen width W increases from 25 to 40 and 50 mm. The lower bound fracture toughness is not sensitive to crack depth and specimen width. Finite element analysis shows that the opening stress in the remaining ligament is elevated with increasing crack depth or specimen width due to the increase of in-plane constraint. The average local cleavage stress is dependent on both crack depth and specimen width but its lower bound value is not sensitive to constraint level. No fixed distance can be found from the cleavage initiation site to the crack tip and this distance increases gradually with decreasing inplane constraint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction With the ever-increasing global burden of retinal disease, there is an urgent need to vastly improve formulation strategies that enhance posterior eye delivery of therapeutics. Despite intravitreal administration having demonstrated notable superiority over other routes in enhancing retinal drug availability, there still exist various significant physical/biochemical barriers preventing optimal drug delivery into the retina. A further complication lies with an inability to reliably translate laboratory-based retinal models into a clinical setting. Several formulation approaches have recently been evaluated to improve intravitreal therapeutic outcomes, and our aim in this review is to highlight strategies that hold the most promise. Areas covered We discuss the complex barriers faced by the intravitreal route and examine how formulation strategies including implants, nanoparticulate carriers, viral vectors and sonotherapy have been utilized to attain both sustained delivery and enhanced penetration through to the retina. We conclude by highlighting the advances and limitations of current in vitro, ex vivo and in vivo retinal models in use by researchers globally. Expert opinion Various nanoparticle compositions have demonstrated the ability to overcome the retinal barriers successfully; however, their utility is limited to the laboratory setting. Optimization of these formulations and the development of more robust experimental retinal models are necessary to translate success in the laboratory into clinically efficacious outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linear water wave theory suggests that wave patterns caused by a steadily moving disturbance are contained within a wedge whose half-angle depends on the depth-based Froude number $F_H$. For the problem of flow past an axisymmetric pressure distribution in a finite-depth channel, we report on the apparent angle of the wake, which is the angle of maximum peaks. For moderately deep channels, the dependence of the apparent wake angle on the Froude number is very different to the wedge angle, and varies smoothly as $F_H$ passes through the critical value $F_H=1$. For shallow water, the two angles tend to follow each other more closely, which leads to very large apparent wake angles for certain regimes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Procedural sedation and analgesia (PSA) is used to attenuate the pain and distress that may otherwise be experienced during diagnostic and interventional medical or dental procedures. As the risk of adverse events increases with the depth of sedation induced, frequent monitoring of level of consciousness is recommended. Level of consciousness is usually monitored during PSA with clinical observation. Processed electroencephalogram-based depth of anaesthesia (DoA) monitoring devices provide an alternative method to monitor level of consciousness that can be used in addition to clinical observation. However, there is uncertainty as to whether their routine use in PSA would be justified. Rigorous evaluation of the clinical benefits of DoA monitors during PSA, including comprehensive syntheses of the available evidence, is therefore required. One potential clinical benefit of using DoA monitoring during PSA is that the technology could improve patient safety by reducing sedation-related adverse events, such as death or permanent neurological disability. We hypothesise that earlier identification of lapses into deeper than intended levels of sedation using DoA monitoring leads to more effective titration of sedative and analgesic medications, and results in a reduction in the risk of adverse events caused by the consequences of over-sedation, such as hypoxaemia. The primary objective of this review is to determine whether using DoA monitoring during PSA in the hospital setting improves patient safety by reducing the risk of hypoxaemia (defined as an arterial partial pressure of oxygen below 60 mmHg or percentage of haemoglobin that is saturated with oxygen [SpO2] less than 90 %). Other potential clinical benefits of using DoA monitoring devices during sedation will be assessed as secondary outcomes. Methods/design Electronic databases will be systematically searched for randomized controlled trials comparing the use of depth of anaesthesia monitoring devices with clinical observation of level of consciousness during PSA. Language restrictions will not be imposed. Screening, study selection and data extraction will be performed by two independent reviewers. Disagreements will be resolved by discussion. Meta-analyses will be performed if suitable. Discussion This review will synthesise the evidence on an important potential clinical benefit of DoA monitoring during PSA within hospital settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is concerned with two-dimensional free surface flows past semi-infinite surface-piercing bodies in a fluid of finite-depth. Throughout the study, it is assumed that the fluid in question is incompressible, and that the effects of viscosity and surface tension are negligible. The problems considered are physically important, since they can be used to model the flow of water near the bow or stern of a wide, blunt ship. Alternatively, the solutions can be interpreted as describing the flow into, or out of, a horizontal slot. In the past, all research conducted on this topic has been dedicated to the situation where the flow is irrotational. The results from such studies are extended here, by allowing the fluid to have constant vorticity throughout the flow domain. In addition, new results for irrotational flow are also presented. When studying the flow of a fluid past a surface-piercing body, it is important to stipulate in advance the nature of the free surface as it intersects the body. Three different possibilities are considered in this thesis. In the first of these possibilities, it is assumed that the free surface rises up and meets the body at a stagnation point. For this configuration, the nonlinear problem is solved numerically with the use of a boundary integral method in the physical plane. Here the semi-infinite body is assumed to be rectangular in shape, with a rounded corner. Supercritical solutions which satisfy the radiation condition are found for various values of the Froude number and the dimensionless vorticity. Subcritical solutions are also found; however these solutions violate the radiation condition and are characterised by a train of waves upstream. In the limit that the height of the body above the horizontal bottom vanishes, the flow approaches that due to a submerged line sink in a $90^\circ$ corner. This limiting problem is also examined as a special case. The second configuration considered in this thesis involves the free surface attaching smoothly to the front face of the rectangular shaped body. For this configuration, nonlinear solutions are computed using a similar numerical scheme to that used in the stagnant attachment case. It is found that these solution exist for all supercritical Froude numbers. The related problem of the cusp-like flow due to a submerged sink in a corner is also considered. Finally, the flow of a fluid emerging from beneath a semi-infinite flat plate is examined. Here the free surface is assumed to detach from the trailing edge of the plate horizontally. A linear problem is formulated under the assumption that the elevation of the plate is close to the undisturbed free surface level. This problem is solved exactly using the Wiener-Hopf technique, and subcritical solutions are found which are characterised by a train of sinusoidal waves in the far field. The nonlinear problem is also considered. Exact relations between certain parameters for supercritical flow are derived using conservation of mass and momentum arguments, and these are confirmed numerically. Nonlinear subcritical solutions are computed, and the results are compared to those predicted by the linear theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose The purpose of this investigation was to assess the angular dependence of a commercial optically stimulated luminescence dosimeter (OSLD) dosimetry system in MV x-ray beams at depths beyondd max and to find ways to mitigate this dependence for measurements in phantoms. Methods Two special holders were designed which allow a dosimeter to be rotated around the center of its sensitive volume. The dosimeter's sensitive volume is a disk, 5 mm in diameter and 0.2 mm thick. The first holder rotates the disk in the traditional way. It positions the disk perpendicular to the beam (gantry pointing to the floor) in the initial position (0°). When the holder is rotated the angle of the disk towards the beam increases until the disk is parallel with the beam (“edge on,” 90°). This is referred to as Setup 1. The second holder offers a new, alternative measurement position. It positions the disk parallel to the beam for all angles while rotating around its center (Setup 2). Measurements with five to ten dosimeters per point were carried out for 6 MV at 3 and 10 cm depth. Monte Carlo simulations using GEANT4 were performed to simulate the response of the active detector material for several angles. Detector and housing were simulated in detail based on microCT data and communications with the manufacturer. Various material compositions and an all-water geometry were considered. Results For the traditional Setup 1 the response of the OSLD dropped on average by 1.4% ± 0.7% (measurement) and 2.1% ± 0.3% (Monte Carlo simulation) for the 90° orientation compared to 0°. Monte Carlo simulations also showed a strong dependence of the effect on the composition of the sensitive layer. Assuming the layer to completely consist of the active material (Al2O3) results in a 7% drop in response for 90° compared to 0°. Assuming the layer to be completely water, results in a flat response within the simulation uncertainty of about 1%. For the new Setup 2, measurements and Monte Carlo simulations found the angular dependence of the dosimeter to be below 1% and within the measurement uncertainty. Conclusions The dosimeter system exhibits a small angular dependence of approximately 2% which needs to be considered for measurements involving other than normal incident beams angles. This applies in particular to clinicalin vivo measurements where the orientation of the dosimeter is dictated by clinical circumstances and cannot be optimized as otherwise suggested here. When measuring in a phantom, the proposed new setup should be considered. It changes the orientation of the dosimeter so that a coplanar beam arrangement always hits the disk shaped detector material from the thin side and thereby reduces the angular dependence of the response to within the measurement uncertainty of about 1%. This improvement makes the dosimeter more attractive for clinical measurements with multiple coplanar beams in phantoms, as the overall measurement uncertainty is reduced. Similarly, phantom based postal audits can transition from the traditional TLD to the more accurate and convenient OSLD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments were carried out to verify the effectiveness of the excess water storage depth (EWSD) in reducing runoff losses of simetryn and thiobencarb from paddy fields upon appreciable rainfall events. A paddy plot having an EWSD of 2 cm was effective in controlling runoff with the herbicide losses of less than 1% of the applied herbicides. Meanwhile, a plot with 0-cm EWSD lost 18.1 and 3.7% of the applied mass of simetryn and thiobencarb, respectively. Therefore, an appropriate EWSD is essential during the recommended 7-day water holding period in order to completely hold the water inside the field in case of rainfall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eight small-scale lysimeters with different excess water storage depths (EWSDs) were used to investigate the behavior of two herbicides, simetryn and thiobencarb, under paddy conditions. The concentration of simetryn dissipated similarly in all the lysimeters, while the thiobencarb concentration varied significantly because thiobencarb can adsorb onto the dissolved organic matter in a manure slurry, which was applied to six of the lysimeters. The herbicide losses (the percentage of the applied mass) from the lysimeters were reversely proportional with the EWSD. The correlation was stronger for simetryn than for thiobencarb. An appropriate EWSD is required to effectively prevent herbicide run-off from the paddy field, especially when a rainfall event occurs soon after herbicide application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In competitive combat sporting environments like boxing, the statistics on a boxer's performance, including the amount and type of punches thrown, provide a valuable source of data and feedback which is routinely used for coaching and performance improvement purposes. This paper presents a robust framework for the automatic classification of a boxer's punches. Overhead depth imagery is employed to alleviate challenges associated with occlusions, and robust body-part tracking is developed for the noisy time-of-flight sensors. Punch recognition is addressed through both a multi-class SVM and Random Forest classifiers. A coarse-to-fine hierarchical SVM classifier is presented based on prior knowledge of boxing punches. This framework has been applied to shadow boxing image sequences taken at the Australian Institute of Sport with 8 elite boxers. Results demonstrate the effectiveness of the proposed approach, with the hierarchical SVM classifier yielding a 96% accuracy, signifying its suitability for analysing athletes punches in boxing bouts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The early and accurate assessment of burns is essential to inform patient treatment regimens; however, this first critical step in clinical practice remains a challenge for specialist burns clinicians worldwide. In this regard, protein biomarkers are a potential adjunct diagnostic tool to assist experienced clinical judgement. Free circulating haemoglobin has previously shown some promise as an indicator of burn depth in a murine animal model. Using blister fluid collected from paediatric burn patients, haemoglobin abundance was measured using semi-quantitative Western blot and immunoassays. Although a trend was observed in which haemoglobin abundance increased with burn wound severity, several patient samples deviated significantly from this trend. Further, it was found that haemoglobin concentration decreased significantly when whole cells, cell debris and fibrinous matrix was removed from the blister fluid by centrifugation; although the relationship to depth was still present. Statistical analyses showed that haemoglobin abundance in the fluid was more strongly related to the time between injury and sample collection and the time taken for spontaneous re-epithelialisation. We hypothesise that prolonged exposure to the blister fluid microenvironment may result in an increased haemoglobin abundance due to erythrocyte lysis, and delayed wound healing