111 resultados para Simplified text.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reading and writing are being transformed by global changes in communication practices using new media technologies. This paper introduces iPed, a research-based pedagogy that enables teachers to navigate innovative digital text production in the literacy classroom. The pedagogy was generated in the context of a longitudinal digital literacy intervention in a school that services low-socioeconomic and ethnically diverse students. iPed synthesizes four key pedagogies that were salient in the analysis of over 180 hours of lesson observations – Link, Challenge, Co-Create, and Share. The strengths of the pedagogy include connecting to students’ home cultures, critical media literacy, collaborative and creative digital text production, and gaining cosmopolitan recognition within global communities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The world we live in is well labeled for the benefit of humans but to date robots have made little use of this resource. In this paper we describe a system that allows robots to read and interpret visible text and use it to understand the content of the scene. We use a generative probabilistic model that explains spotted text in terms of arbitrary search terms. This allows the robot to understand the underlying function of the scene it is looking at, such as whether it is a bank or a restaurant. We describe the text spotting engine at the heart of our system that is able to detect and parse wild text in images, and the generative model, and present results from images obtained with a robot in a busy city setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many data mining techniques have been proposed for mining useful patterns in text documents. However, how to effectively use and update discovered patterns is still an open research issue, especially in the domain of text mining. Since most existing text mining methods adopted term-based approaches, they all suffer from the problems of polysemy and synonymy. Over the years, people have often held the hypothesis that pattern (or phrase) based approaches should perform better than the term-based ones, but many experiments did not support this hypothesis. This paper presents an innovative technique, effective pattern discovery which includes the processes of pattern deploying and pattern evolving, to improve the effectiveness of using and updating discovered patterns for finding relevant and interesting information. Substantial experiments on RCV1 data collection and TREC topics demonstrate that the proposed solution achieves encouraging performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This magazine, written by Melissa Giles, features three Brisbane-based media organisations: Radio 4RPH, Queensland Pride and 98.9FM. The PDF file on this website contains a text-only version of the magazine. Contact the author if you would like a copy of the text-only EPUB file or a copy of the full digital magazine with images. An audio version of the magazine is available at http://eprints.qut.edu.au/41729/

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel, web-accessible scientific workflow system which makes large-scale comparative studies accessible without programming or excessive configuration requirements. GPFlow allows a workflow defined on single input values to be automatically lifted to operate over collections of input values and supports the formation and processing of collections of values without the need for explicit iteration constructs. We introduce a new model for collection processing based on key aggregation and slicing which guarantees processing integrity and facilitates automatic association of inputs, allowing scientific users to manage the combinatorial explosion of data values inherent in large scale comparative studies. The approach is demonstrated using a core task from comparative genomics, and builds upon our previous work in supporting combined interactive and batch operation, through a lightweight web-based user interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From the late sixteenth century, in response to the problem of how best to teach children to read, a variety of texts such as primers, spellers and readers were produced in England for vernacular instruction. This paper describes how these materials were used by teachers to develop first, a specific religious understanding according to the stricture of the time and second, a moral reading practice that provided the child with a guide to secular conduct. The analysis focuses on the use of these texts as a productive means for shaping the child-reader in the context of newly emerging educational spaces which fostered a particular, morally formative relation among teacher, child and text.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is a big challenge to guarantee the quality of discovered relevance features in text documents for describing user preferences because of the large number of terms, patterns, and noise. Most existing popular text mining and classification methods have adopted term-based approaches. However, they have all suffered from the problems of polysemy and synonymy. Over the years, people have often held the hypothesis that pattern-based methods should perform better than term- based ones in describing user preferences, but many experiments do not support this hypothesis. This research presents a promising method, Relevance Feature Discovery (RFD), for solving this challenging issue. It discovers both positive and negative patterns in text documents as high-level features in order to accurately weight low-level features (terms) based on their specificity and their distributions in the high-level features. The thesis also introduces an adaptive model (called ARFD) to enhance the exibility of using RFD in adaptive environment. ARFD automatically updates the system's knowledge based on a sliding window over new incoming feedback documents. It can efficiently decide which incoming documents can bring in new knowledge into the system. Substantial experiments using the proposed models on Reuters Corpus Volume 1 and TREC topics show that the proposed models significantly outperform both the state-of-the-art term-based methods underpinned by Okapi BM25, Rocchio or Support Vector Machine and other pattern-based methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rule-based approach for classifying previously identified medical concepts in the clinical free text into an assertion category is presented. There are six different categories of assertions for the task: Present, Absent, Possible, Conditional, Hypothetical and Not associated with the patient. The assertion classification algorithms were largely based on extending the popular NegEx and Context algorithms. In addition, a health based clinical terminology called SNOMED CT and other publicly available dictionaries were used to classify assertions, which did not fit the NegEx/Context model. The data for this task includes discharge summaries from Partners HealthCare and from Beth Israel Deaconess Medical Centre, as well as discharge summaries and progress notes from University of Pittsburgh Medical Centre. The set consists of 349 discharge reports, each with pairs of ground truth concept and assertion files for system development, and 477 reports for evaluation. The system’s performance on the evaluation data set was 0.83, 0.83 and 0.83 for recall, precision and F1-measure, respectively. Although the rule-based system shows promise, further improvements can be made by incorporating machine learning approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the era of Web 2.0, huge volumes of consumer reviews are posted to the Internet every day. Manual approaches to detecting and analyzing fake reviews (i.e., spam) are not practical due to the problem of information overload. However, the design and development of automated methods of detecting fake reviews is a challenging research problem. The main reason is that fake reviews are specifically composed to mislead readers, so they may appear the same as legitimate reviews (i.e., ham). As a result, discriminatory features that would enable individual reviews to be classified as spam or ham may not be available. Guided by the design science research methodology, the main contribution of this study is the design and instantiation of novel computational models for detecting fake reviews. In particular, a novel text mining model is developed and integrated into a semantic language model for the detection of untruthful reviews. The models are then evaluated based on a real-world dataset collected from amazon.com. The results of our experiments confirm that the proposed models outperform other well-known baseline models in detecting fake reviews. To the best of our knowledge, the work discussed in this article represents the first successful attempt to apply text mining methods and semantic language models to the detection of fake consumer reviews. A managerial implication of our research is that firms can apply our design artifacts to monitor online consumer reviews to develop effective marketing or product design strategies based on genuine consumer feedback posted to the Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is a big challenge to acquire correct user profiles for personalized text classification since users may be unsure in providing their interests. Traditional approaches to user profiling adopt machine learning (ML) to automatically discover classification knowledge from explicit user feedback in describing personal interests. However, the accuracy of ML-based methods cannot be significantly improved in many cases due to the term independence assumption and uncertainties associated with them. This paper presents a novel relevance feedback approach for personalized text classification. It basically applies data mining to discover knowledge from relevant and non-relevant text and constraints specific knowledge by reasoning rules to eliminate some conflicting information. We also developed a Dempster-Shafer (DS) approach as the means to utilise the specific knowledge to build high-quality data models for classification. The experimental results conducted on Reuters Corpus Volume 1 and TREC topics support that the proposed technique achieves encouraging performance in comparing with the state-of-the-art relevance feedback models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

WHAT if you lost someone you loved? What if you had to let go for the sake of your own sanity? Lachlan Philpott's Colder and Dennis Kelly's Orphans, playing as part of La Boite's and Queensland Theatre Company's independents programs, are emotionally and textually dense theatrical works...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of text classification techniques has been largely promoted in the past decade due to the increasing availability and widespread use of digital documents. Usually, the performance of text classification relies on the quality of categories and the accuracy of classifiers learned from samples. When training samples are unavailable or categories are unqualified, text classification performance would be degraded. In this paper, we propose an unsupervised multi-label text classification method to classify documents using a large set of categories stored in a world ontology. The approach has been promisingly evaluated by compared with typical text classification methods, using a real-world document collection and based on the ground truth encoded by human experts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is a big challenge to clearly identify the boundary between positive and negative streams. Several attempts have used negative feedback to solve this challenge; however, there are two issues for using negative relevance feedback to improve the effectiveness of information filtering. The first one is how to select constructive negative samples in order to reduce the space of negative documents. The second issue is how to decide noisy extracted features that should be updated based on the selected negative samples. This paper proposes a pattern mining based approach to select some offenders from the negative documents, where an offender can be used to reduce the side effects of noisy features. It also classifies extracted features (i.e., terms) into three categories: positive specific terms, general terms, and negative specific terms. In this way, multiple revising strategies can be used to update extracted features. An iterative learning algorithm is also proposed to implement this approach on RCV1, and substantial experiments show that the proposed approach achieves encouraging performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Even though titanium dioxide photocatalysis has been promoted as a leading green technology for water purification, many issues have hindered its application on a large commercial scale. For the materials scientist the main issues have centred the synthesis of more efficient materials and the investigation of degradation mechanisms; whereas for the engineers the main issues have been the development of appropriate models and the evaluation of intrinsic kinetics parameters that allow the scale up or re-design of efficient large-scale photocatalytic reactors. In order to obtain intrinsic kinetics parameters the reaction must be analysed and modelled considering the influence of the radiation field, pollutant concentrations and fluid dynamics. In this way, the obtained kinetic parameters are independent of the reactor size and configuration and can be subsequently used for scale-up purposes or for the development of entirely new reactor designs. This work investigates the intrinsic kinetics of phenol degradation over titania film due to the practicality of a fixed film configuration over a slurry. A flat plate reactor was designed in order to be able to control reaction parameters that include the UV irradiance, flow rates, pollutant concentration and temperature. Particular attention was paid to the investigation of the radiation field over the reactive surface and to the issue of mass transfer limited reactions. The ability of different emission models to describe the radiation field was investigated and compared to actinometric measurements. The RAD-LSI model was found to give the best predictions over the conditions tested. Mass transfer issues often limit fixed film reactors. The influence of this phenomenon was investigated with specifically planned sets of benzoic acid experiments and with the adoption of the stagnant film model. The phenol mass transfer coefficient in the system was calculated to be km,phenol=8.5815x10-7Re0.65(ms-1). The data obtained from a wide range of experimental conditions, together with an appropriate model of the system, has enabled determination of intrinsic kinetic parameters. The experiments were performed in four different irradiation levels (70.7, 57.9, 37.1 and 20.4 W m-2) and combined with three different initial phenol concentrations (20, 40 and 80 ppm) to give a wide range of final pollutant conversions (from 22% to 85%). The simple model adopted was able to fit the wide range of conditions with only four kinetic parameters; two reaction rate constants (one for phenol and one for the family of intermediates) and their corresponding adsorption constants. The intrinsic kinetic parameters values were defined as kph = 0.5226 mmol m-1 s-1 W-1, kI = 0.120 mmol m-1 s-1 W-1, Kph = 8.5 x 10-4 m3 mmol-1 and KI = 2.2 x 10-3 m3 mmol-1. The flat plate reactor allowed the investigation of the reaction under two different light configurations; liquid and substrate side illumination. The latter of particular interest for real world applications where light absorption due to turbidity and pollutants contained in the water stream to be treated could represent a significant issue. The two light configurations allowed the investigation of the effects of film thickness and the determination of the catalyst optimal thickness. The experimental investigation confirmed the predictions of a porous medium model developed to investigate the influence of diffusion, advection and photocatalytic phenomena inside the porous titania film, with the optimal thickness value individuated at 5 ìm. The model used the intrinsic kinetic parameters obtained from the flat plate reactor to predict the influence of thickness and transport phenomena on the final observed phenol conversion without using any correction factor; the excellent match between predictions and experimental results provided further proof of the quality of the parameters obtained with the proposed method.