467 resultados para Signal processing


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Road surface macro-texture is an indicator used to determine the skid resistance levels in pavements. Existing methods of quantifying macro-texture include the sand patch test and the laser profilometer. These methods utilise the 3D information of the pavement surface to extract the average texture depth. Recently, interest in image processing techniques as a quantifier of macro-texture has arisen, mainly using the Fast Fourier Transform (FFT). This paper reviews the FFT method, and then proposes two new methods, one using the autocorrelation function and the other using wavelets. The methods are tested on pictures obtained from a pavement surface extending more than 2km's. About 200 images were acquired from the surface at approx. 10m intervals from a height 80cm above ground. The results obtained from image analysis methods using the FFT, the autocorrelation function and wavelets are compared with sensor measured texture depth (SMTD) data obtained from the same paved surface. The results indicate that coefficients of determination (R2) exceeding 0.8 are obtained when up to 10% of outliers are removed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sigma-delta modulated systems have a number of very appealing properties and are, therefore, heavily used in analog to digital converters, amplifiers, and modulators. This paper presents new results which indicate that they may also have significant potential for general purpose arithmetic processing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The phase of an analytic signal constructed from the autocorrelation function of a signal contains significant information about the shape of the signal. Using Bedrosian's (1963) theorem for the Hilbert transform it is proved that this phase is robust to multiplicative noise if the signal is baseband and the spectra of the signal and the noise do not overlap. Higher-order spectral features are interpreted in this context and shown to extract nonlinear phase information while retaining robustness. The significance of the result is that prior knowledge of the spectra is not required.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents an experimental study on the vibration signal patterns associated with a simulated piston slap test of a four-cylinder diesel engine. It is found that a simulated worn-off piston results in an increase in vibration RMS peak amplitudes associated with the major mechanical events of the corresponding cylinder (i.e., inlet and exhaust valve closing and combustion of Cylinder 1). This then led to an increase of overall vibration amplitude of the time domain statistical features such as RMS, Crest Factor, Skewness and Kurtosis in all loading conditions. The simulated worn-off piston not only increased the impact amplitude of piston slap during the engine combustion, it also produced a distinct impulse response during the air induction stroke of the cylinder attributing to an increase of lateral impact force as a result of piston reciprocating motion and the increased clearance between the worn-off piston and the cylinder. The unique signal patterns of piston slap disclosed in this paper can be utilized to assist in the development of condition monitoring tools for automated diagnosis of similar diesel engine faults in practical applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We propose a multi-layer spectrum sensing optimisation algorithm to maximise sensing efficiency by computing the optimal sensing and transmission durations for a fast changing, dynamic primary user. Dynamic primary user traffic is modelled as a random process, where the primary user changes states during both the sensing period and transmission period to reflect a more realistic scenario. Furthermore, we formulate joint constraints to correctly reflect interference to the primary user and lost opportunity of the secondary user during the transmission period. Finally, we implement a novel duty cycle based detector that is optimised with respect to PU traffic to accurately detect primary user activity during the sensing period. Simulation results show that unlike currently used detection models, the proposed algorithm can jointly optimise the sensing and transmission durations to simultaneously satisfy the optimisation constraints for the considered primary user traffic.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

For clinical use, in electrocardiogram (ECG) signal analysis it is important to detect not only the centre of the P wave, the QRS complex and the T wave, but also the time intervals, such as the ST segment. Much research focused entirely on qrs complex detection, via methods such as wavelet transforms, spline fitting and neural networks. However, drawbacks include the false classification of a severe noise spike as a QRS complex, possibly requiring manual editing, or the omission of information contained in other regions of the ECG signal. While some attempts were made to develop algorithms to detect additional signal characteristics, such as P and T waves, the reported success rates are subject to change from person-to-person and beat-to-beat. To address this variability we propose the use of Markov-chain Monte Carlo statistical modelling to extract the key features of an ECG signal and we report on a feasibility study to investigate the utility of the approach. The modelling approach is examined with reference to a realistic computer generated ECG signal, where details such as wave morphology and noise levels are variable.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Computational optimisation of clinically important electrocardiogram signal features, within a single heart beat, using a Markov-chain Monte Carlo (MCMC) method is undertaken. A detailed, efficient data-driven software implementation of an MCMC algorithm has been shown. Initially software parallelisation is explored and has been shown that despite the large amount of model parameter inter-dependency that parallelisation is possible. Also, an initial reconfigurable hardware approach is explored for future applicability to real-time computation on a portable ECG device, under continuous extended use.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Inhibitory control deficits are well documented in schizophrenia, supported by impairment in an established measure of response inhibition, the stop-signal reaction time (SSRT). We investigated the neural basis of this impairment by comparing schizophrenia patients and controls matched for age, sex and education on behavioural, functional magnetic resonance imaging (fMRI) and event-related potential (ERP) indices of stop-signal task performance. Compared to controls, patients exhibited slower SSRT and reduced right inferior frontal gyrus (rIFG) activation, but rIFG activation correlated with SSRT in both groups. Go stimulus and stop-signal ERP components (N1/P3) were smaller in patients, but the peak latencies of stop-signal N1 and P3 were also delayed in patients, indicating impairment early in stop-signal processing. Additionally, response-locked lateralised readiness potentials indicated response preparation was prolonged in patients. An inability to engage rIFG may predicate slowed inhibition in patients, however multiple spatiotemporal irregularities in the networks underpinning stop-signal task performance may contribute to this deficit.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper investigates demodulation of differentially phase modulated signals DPMS using optimal HMM filters. The optimal HMM filter presented in the paper is computationally of order N3 per time instant, where N is the number of message symbols. Previously, optimal HMM filters have been of computational order N4 per time instant. Also, suboptimal HMM filters have be proposed of computation order N2 per time instant. The approach presented in this paper uses two coupled HMM filters and exploits knowledge of ...

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Frogs have received increasing attention due to their effectiveness for indicating the environment change. Therefore, it is important to monitor and assess frogs. With the development of sensor techniques, large volumes of audio data (including frog calls) have been collected and need to be analysed. After transforming the audio data into its spectrogram representation using short-time Fourier transform, the visual inspection of this representation motivates us to use image processing techniques for analysing audio data. Applying acoustic event detection (AED) method to spectrograms, acoustic events are firstly detected from which ridges are extracted. Three feature sets, Mel-frequency cepstral coefficients (MFCCs), AED feature set and ridge feature set, are then used for frog call classification with a support vector machine classifier. Fifteen frog species widely spread in Queensland, Australia, are selected to evaluate the proposed method. The experimental results show that ridge feature set can achieve an average classification accuracy of 74.73% which outperforms the MFCCs (38.99%) and AED feature set (67.78%).