211 resultados para Seismogenic Zones
Resumo:
Spaces without northerly orientations have an impact on the ‘energy behaviour’ of a building. This paper outlines possible energy savings and better performance achieved by different zenithal solar passive strategies (skylights, roof monitors and clerestory roof windows) and element arrangements across the roof in zones of cold to temperate climates typical of the central and central-southern Argentina. Analyses were undertaken considering daylighting, thermal and ventilation performances of the different strategies. The results indicate that heating,ventilation and lighting loads in spaces without an equator-facing facade can be significantly reduced by implementing solar passive strategies. In the thermal aspect, the solar saving fraction reached for the different strategies were averaged 43.16% for clerestories, 41.4% for roof monitors and 38.86% for skylights for a glass area of 9% to the floor area. The results also indicate average illuminance levels above 500 lux for the different clerestory and monitor arrangements, uniformity ratios of 0.66–0.82 for the most distributed arrangements and day-lighting factors between 11.78 and 20.30% for clear sky conditions, depending on the strategy. In addition, minimum air changes rates of 4 were reached for the most extreme conditions.
Resumo:
Worldwide, the current pattern of urban development is unsustainable and metropolitan planning and development strategies deliver poor environmental outcomes in relation to energy production. As a result, an increasing number of governments and private sector development companies are initiating projects that aim to deliver enhanced environmental outcomes rather than a ‘business as usual’ approach. This paper will summarise the findings from a study that explored the link between building orientation and energy efficiencies in sub-tropical and tropical climates. The study used a new thermal modelling software tool developed by CSIRO that responds more accurately to residential heating and cooling energy performance in those climate zones. This software tool responds to industry criticisms regarding cold climate modelling systems that do not make sufficient allowance for natural ventilation. The study examined a range of low, medium and high-density dwelling types and investigated the impact of orientation, insulation, ventilation and shading devices on energy efficiencies. This paper will examine the findings from the medium and high-density case study developments as these are relevant to residential developments in many South East Asian countries, such as Singapore, Hong Kong and Malaysia. Finally, the paper will explore the potential benefits that medium and high-density residential developments have in the development of ‘solar cities’ and ‘solar suburbs’.
Resumo:
In today’s global design world, architectural and other related design firms design across time zones and geographically distant locations. High bandwidth virtual environments have the potential to make a major impact on these global design teams. However, there is insufficient evidence about the way designers collaborate in their normal working environments using traditional and/or digital media. This paper presents a method to study the impact of communication and information technologies on collaborative design practice by comparing design tasks done in a normal working environment with design tasks done in a virtual environment. Before introducing high bandwidth collaboration technology to the work environment, a baseline study is conducted to observe and analyze the existing collaborative process. Designers currently rely on phone, fax, email, and image files for communication and collaboration. Describing the current context is important for comparison with the following phases. We developed the coding scheme that will be used in analyzing three stages of the collaborative design activity. The results will establish the basis for measures of collaborative design activity when a new technology is introduced later to the same work environment – for example, designers using electronic whiteboards, 3D virtual worlds, webcams, and internet phone. The results of this work will form the basis of guidelines for the introduction of technology into global design offices
Resumo:
This study is an inquiry into the professional identity constructions of early childhood educators, where identity is conceptualised as social and contextual. Through a genealogical analysis of narratives of four Queensland early childhood teachers, the thesis renders as problematic universal and fixed notions of what it is to be an early childhood professional. The data are the four teachers’ professional life history narratives recounted through a series of conversational interviews with each participant. As they spoke about professionalism and ethics, these teachers struggled to locate themselves as professionals, as they drew on a number of dominant discourses available to them. These dominant discourses were located and mapped through analysis of the participants’ talk about relationships with parents, colleagues and authorities. Genealogical analysis enabled multiple readings of the ways in which the participants’ talk held together certainties and uncertainties, as they recounted their experiences and spoke of early childhood expertise, relational engagement and ethics. The thesis concludes with suggestions for ways to support early childhood teachers and pre-service teachers to both engage with and resist normative processes and expectations of professional identity construction. In so doing, multiple and contextual opportunities can be made available when it comes to being professional and ‘doing’ ethics. The thesis makes an argument for new possibilities for thinking and speaking professional identities that include both certainty and uncertainty, comfort and discomfort, and these seemingly oppositional terms are held together in tension, with an insistence that both are necessary and true. The use of provocations offers tools through which pre-service teachers, teachers and teacher educators can access new positions associated with certainties and uncertainties in professional identities. These new positions call for work that supports experiences of ‘de-comfort’ – that is, experiences that encourage early childhood educators to step away from the comfort zones that can become part of expertise, professional relationships and ethics embedded within normative representations of what it is to be an early childhood professional.
Resumo:
Citrus canker is a disease of citrus and closely related species, caused by the bacterium Xanthomonas citri subsp. citri. This disease, previously exotic to Australia, was detected on a single farm [infested premise-1, (IP1). IP is the terminology used in official biosecurity protocols to describe a locality at which an exotic plant pest has been confirmed or is presumed to exist. IP are numbered sequentially as they are detected] in Emerald, Queensland in July 2004. During the following 10 months the disease was subsequently detected on two other farms (IP2 and IP3) within the same area and studies indicated the disease first occurred on IP1 and spread to IP2 and IP3. The oldest, naturally infected plant tissue observed on any of these farms indicated the disease was present on IP1 for several months before detection and established on IP2 and IP3 during the second quarter (i.e. autumn) 2004. Transect studies on some IP1 blocks showed disease incidences ranged between 52 and 100% (trees infected). This contrasted to very low disease incidence, less than 4% of trees within a block, on IP2 and IP3. The mechanisms proposed for disease spread within blocks include weather-assisted dispersal of the bacterium (e.g. wind-driven rain) and movement of contaminated farm equipment, in particular by pivot irrigator towers via mechanical damage in combination with abundant water. Spread between blocks on IP2 was attributed to movement of contaminated farm equipment and/or people. Epidemiology results suggest: (i) successive surveillance rounds increase the likelihood of disease detection; (ii) surveillance sensitivity is affected by tree size; and (iii) individual destruction zones (for the purpose of eradication) could be determined using disease incidence and severity data rather than a predefined set area.
Resumo:
President’s Message Hello fellow AITPM members, Well I can’t believe it’s already October! My office is already organising its end of year function and looking to plan for 2010. Our whole School is moving to a different building next year, with the lovely L block eventually making way for a new shiny one. Those of you who have entered the Brisbane CBD from the south side, across the Captain Cook Bridge, would know L block as the big 9 storey brick and concrete Lego block ode to 1970’s functional architecture, which greets you on the right hand side. Onto traffic matters: an issue that has been tossing around in my mind of late is that of speed. I know I am growing older and may be prematurely becoming a “grumpy old man”, but everyone around me locally seems to be accelerating off from the stop line much faster than I was taught to for economical driving, both here and in the United States (yes they made my wife and me resit our written and practical driving tests when we lived there). People here in Australia also seem to be driving right on top of the posted speed limit, on whichever part of the Road Hierarchy, whether urban or rural. I was also taught on both sides of the planet that the posted speed limit is a maximum legal speed, not the recommended driving speed. This message did seem to sink in to the American drivers around me when we lived in Oregon - where people did appear to drive more cautiously. Further, posted speed limits in Oregon were, and I presume still are, set more conservative by about 5mph or 10km/h than Australian limits, for any given part of the Road Hierarchy. Another excellent speed limit treatment used in Oregon was in school zones, where reduced speed limits applied “when children are present” rather than during prescribed hours on school days. This would be especially useful here in Australia, where a lot of extra-curricular activities take place around schools outside of the prescribed speed limit hours. Before and after hours school care is on the increase (with parents dropping and collecting children near dawn and dusk in the winter), and many childcentred land uses are located adjacent to schools, such as Scouts/Guides halls, swimming pools and parks. Consequentially, I believe there needs to be some consideration towards more public campaigning about economical driving and the real purpose of the speed limit = or perhaps even a rethink of the speed limit concept, if people really are driving on top of it and it’s not just me becoming grumpier (our industrial psychology friends at the research centres may be able to assist us here). The Queensland organising committee is now in full swing organising the 2010 AITPM National Conference, What’s New?, so please keep a lookout for related content. Best regards to all, Jon Bunker PS A Cartoonists view of traffic engineers I thought you might enjoy this. http://xkcd.com/277/
Resumo:
The paper analyses the expected value of OD volumes from probe with fixed error, error that is proportional to zone size and inversely proportional to zone size. To add realism to the analysis, real trip ODs in the Tokyo Metropolitan Region are synthesised. The results show that for small zone coding with average radius of 1.1km, and fixed measurement error of 100m, an accuracy of 70% can be expected. The equivalent accuracy for medium zone coding with average radius of 5km would translate into a fixed error of approximately 300m. As expected small zone coding is more sensitive than medium zone coding as the chances of the probe error envelope falling into adjacent zones are higher. For the same error radii, error proportional to zone size would deliver higher level of accuracy. As over half (54.8%) of the trip ends start or end at zone with equivalent radius of ≤ 1.2 km and only 13% of trips ends occurred at zones with equivalent radius ≥2.5km, measurement error that is proportional to zone size such as mobile phone would deliver higher level of accuracy. The synthesis of real OD with different probe error characteristics have shown that expected value of >85% is difficult to achieve for small zone coding with average radius of 1.1km. For most transport applications, OD matrix at medium zone coding is sufficient for transport management. From this study it can be drawn that GPS with error range between 2 and 5m, and at medium zone coding (average radius of 5km) would provide OD estimates greater than 90% of the expected value. However, for a typical mobile phone operating error range at medium zone coding the expected value would be lower than 85%. This paper assumes transmission of one origin and one destination positions from the probe. However, if multiple positions within the origin and destination zones are transmitted, map matching to transport network could be performed and it would greatly improve the accuracy of the probe data.
Resumo:
The transformation of China's urban landscape has witnessed a boom in cultural adaptation, namely the adaptation of a Western idea, the creative cluster. This chapter examines the formatting of hundreds of creative clusters-art centres, animation bases, cultural zones, and incubators. The cluster has important implications for how we understand China going forward into the second decade of the 21st century. The cluster phenomenon has resulted in to a substantive remaking of the social contract, between officials, entrepreneurs, local residents, academics-and most significantly cultural producers. However, these processes of adaption are mostly driven by real estate developers working in partnership with local government officials. Cut and paste design is the fast road to completion. In this sense, the description 'creative' may well be redundant.
Resumo:
Changes in load characteristics, deterioration with age, environmental influences and random actions may cause local or global damage in structures, especially in bridges, which are designed for long life spans. Continuous health monitoring of structures will enable the early identification of distress and allow appropriate retrofitting in order to avoid failure or collapse of the structures. In recent times, structural health monitoring (SHM) has attracted much attention in both research and development. Local and global methods of damage assessment using the monitored information are an integral part of SHM techniques. In the local case, the assessment of the state of a structure is done either by direct visual inspection or using experimental techniques such as acoustic emission, ultrasonic, magnetic particle inspection, radiography and eddy current. A characteristic of all these techniques is that their application requires a prior localization of the damaged zones. The limitations of the local methodologies can be overcome by using vibration-based methods, which give a global damage assessment. The vibration-based damage detection methods use measured changes in dynamic characteristics to evaluate changes in physical properties that may indicate structural damage or degradation. The basic idea is that modal parameters (notably frequencies, mode shapes, and modal damping) are functions of the physical properties of the structure (mass, damping, and stiffness). Changes in the physical properties will therefore cause changes in the modal properties. Any reduction in structural stiffness and increase in damping in the structure may indicate structural damage. This research uses the variations in vibration parameters to develop a multi-criteria method for damage assessment. It incorporates the changes in natural frequencies, modal flexibility and modal strain energy to locate damage in the main load bearing elements in bridge structures such as beams, slabs and trusses and simple bridges involving these elements. Dynamic computer simulation techniques are used to develop and apply the multi-criteria procedure under different damage scenarios. The effectiveness of the procedure is demonstrated through numerical examples. Results show that the proposed method incorporating modal flexibility and modal strain energy changes is competent in damage assessment in the structures treated herein.
Resumo:
Paropsis atomaria is a recently emerged pest of eucalypt plantations in subtropical Australia. Its broad host range of at least 20 eucalypt species and wide geographical distribution provides it the potential to become a serious forestry pest both within Australia and, if accidentally introduced, overseas. Although populations of P. atomaria are genetically similar throughout its range, population dynamics differ between regions. Here, we determine temperature-dependent developmental requirements using beetles sourced from temperate and subtropical zones by calculating lower temperature thresholds, temperature-induced mortality, and day-degree requirements. We combine these data with field mortality estimates of immature life stages to produce a cohort-based model, ParopSys, using DYMEX™ that accurately predicts the timing, duration, and relative abundance of life stages in the field and number of generations in a spring–autumn (September–May) field season. Voltinism was identified as a seasonally plastic trait dependent upon environmental conditions, with two generations observed and predicted in the Australian Capital Territory, and up to four in Queensland. Lower temperature thresholds for development ranged between 4 and 9 °C, and overall development rates did not differ according to beetle origin. Total immature development time (egg–adult) was approximately 769.2 ± S.E. 127.8 DD above a lower temperature threshold of 6.4 ± S.E. 2.6 °C. ParopSys provides a basic tool enabling forest managers to use the number of generations and seasonal fluctuations in abundance of damaging life stages to estimate the pest risk of P. atomaria prior to plantation establishment, and predict the occurrence and duration of damaging life stages in the field. Additionally, by using local climatic data the pest potential of P. atomaria can be estimated to predict the risk of it establishing if accidentally introduced overseas. Improvements to ParopSys’ capability and complexity can be made as more biological data become available.
Resumo:
Although comparison phakometry has been used by a number of studies to measure posterior corneal shape, these studies have not calculated the size of the posterior corneal zones of reflection they assessed. This paper develops paraxial equations for calculating posterior corneal zones of reflection, based on standard keratometry equations and equivalent mirror theory. For targets used in previous studies, posterior corneal reflection zone sizes were calculated using paraxial equations and using exact ray tracing, assuming spherical and aspheric corneal surfaces. Paraxial methods and exact ray tracing methods give similar estimates for reflection zone sizes less than 2 mm, but for larger zone sizes ray tracing methods should be used.
Resumo:
An increasing loss of engineering expertise from the railway industry globally coincides with a rapid expansion of the industry. Continuing professional development is critical to this sector, but needs to be distance based to cater for the international demand for such development. A unique Master degree in railway infrastructure was created out of extensive materials prepared by expert engineers, which captured their detailed knowledge. A team at Queensland University of Technology in Australia prepared the detailed and high quality online resources needed for this degree; the team comprised an academic, a project manager, learning designers and a publisher, all with experience in distance education. The degree has been running for 12 months with students from many countries. A key aim of the degree is to create a collaborative community comprising learners, teachers and practicing engineers from around the world. The team has also worked hard to ensure the content of the study materials, the form of the assessment tasks and the interactive learning sessions relate closely to real-world problems and challenges faced by the students in their workplace, wherever that is. Widely differing time zones are a challenge but are usually obviated by the asynchronous nature of the online resources.
Resumo:
Articular cartilage exhibits limited intrinsic regenerative capacity and focal tissue defects can lead to the development of osteoarthritis (OA), a painful and debilitating loss of cartilage tissue. In Australia, 1.4 million people are affected by OA and its prevalence is increasing in line with current demographics. As treatment options are limited, new therapeutic approaches are being investigated including biological resurfacing of joints with tissue-engineered cartilage. Despite some progress in the field, major challenges remain to be addressed for large scale clinical success. For example, large numbers of chondrogenic cells are required for cartilage formation, but chondrocytes lose their chondrogenic phenotype (dedifferentiate) during in vitro propagation. Additionally, the zonal organization of articular cartilage is critical for normal cartilage function, but development of zonal structure has been largely neglected in cartilage repair strategies. Therefore, we hypothesised that culture conditions for freshly isolated human articular chondrocytes from non-OA and OA sources can be improved by employing microcarrier cultures and a reduced oxygen environment and that oxygen is a critical factor in the maintenance of the zonal chondrocyte phenotype. Microcarriers have successfully been used to cultivate bovine chondrocytes, and offer a potential alternative for clinical expansion of human chondrocytes. We hypothesised that improved yields can be achieved by propagating human chondrocytes on microcarriers. We found that cells on microcarriers acquired a flattened, polygonal morphology and initially proliferated faster than monolayercultivated cells. However, microcarrier cultivation over four weeks did not improve growth rates or the chondrogenic potential of non-OA and OA human articular chondrocytes over conventional monolayer cultivation. Based on these observations, we aimed to optimise culture conditions by modifying oxygen tension, to more closely reflect the in vivo environment. We found that propagation at 5% oxygen tension (moderate hypoxia) did not improve proliferation or redifferentiation capacity of human osteoarthritic chondrocytes. Moderate hypoxia increased the expression of chondrogenic markers during redifferentiation. However, osteoarthritic chondrocytes cultivated on microcarriers exhibited lower expression levels of chondrogenic surface marker proteins and had at best equivalent redifferentiation capacities compared to monolayer-cultured cells. This suggests that monolayer culture with multiple passaging potentially selects for a subpopulation of cells with higher differentiation capacity, which are otherwise rare in osteoarthritic, aged cartilage. However, fibroblastic proteins were found to be highly expressed in all cultures of human osteoarthritic chondrocytes indicating the presence of a high proportion of dedifferentiated, senescent cells with a chondrocytic phenotype that was not rescued by moderate hypoxia. The different zones of cartilage support chondrocyte subpopulations, which exhibit characteristic protein expression and experience varying oxygen tensions. We, therefore, hypothesised that oxygen tension affects the zonal marker expression of human articular chondrocytes isolated from the different cartilage layers. We found that zonal chondrocytes maintained these phenotypic differences during in vitro cultivation. Low oxygen environments favoured the expression of the zonal marker proteoglycan 4 in superficial cells, most likely through the promotion of chondrogenesis. The putative zonal markers clusterin and cartilage intermediate layer protein were found to be expressed by all subpopulations of human osteoarthritic chondrocytes ex vivo and, thus, may not be reliable predictors of in vitro stratification using these clinically relevant cells. The findings in this thesis underline the importance of considering low oxygen conditions and zonal stratification when creating native-like cartilaginous constructs. We have not yet found the right cues to successfully cultivate clinically-relevant human osteoarthritic chondrocytes in vitro. A more thorough understanding of chondrocyte biology and the processes of chondrogenesis are required to ensure the clinical success of cartilage tissue engineering.
Resumo:
Water Sensitive Urban Design (WSUD) systems have the potential mitigate the hydrologic disturbance and water quality concerns associated with stormwater runoff from urban development. In the last few years WSUD has been strongly promoted in South East Queensland (SEQ) and new developments are now required to use WSUD systems to manage stormwater runoff. However, there has been limited field evaluation of WSUD systems in SEQ and consequently knowledge of their effectiveness in the field, under storm events, is limited. The objective of this research project was to assess the effectiveness of WSUD systems installed in a residential development, under real storm events. To achieve this objective, a constructed wetland, bioretention swale and a bioretention basin were evaluated for their ability to improve the hydrologic and water quality characteristics of stormwater runoff from urban development. The monitoring focused on storm events, with sophisticated event monitoring stations measuring the inflow and outflow from WSUD systems. Data analysis undertaken confirmed that the constructed wetland, bioretention basin and bioretention swale improved the hydrologic characteristics by reducing peak flow. The bioretention systems, particularly the bioretention basin also reduced the runoff volume and frequency of flow, meeting key objectives of current urban stormwater management. The pollutant loads were reduced by the WSUD systems to above or just below the regional guidelines, showing significant reductions to TSS (70-85%), TN (40-50%) and TP (50%). The load reduction of NOx and PO4 3- by the bioretention basin was poor (<20%), whilst the constructed wetland effectively reduced the load of these pollutants in the outflow by approximately 90%. The primary reason for the load reduction in the wetland was due to a reduction in concentration in the outflow, showing efficient treatment of stormwater by the system. In contrast, the concentration of key pollutants exiting the bioretention basin were higher than the inflow. However, as the volume of stormwater exiting the bioretention basin was significantly lower than the inflow, a load reduction was still achieved. Calibrated MUSIC modelling showed that the bioretention basin, and in particular, the constructed wetland were undersized, with 34% and 62% of stormwater bypassing the treatment zones in the devices. Over the long term, a large proportion of runoff would not receive treatment, considerably reducing the effectiveness of the WSUD systems.