167 resultados para Secret Sharing
Resumo:
We observe that MDS codes have interesting properties that can be used to construct ideal threshold schemes. These schemes permit the combiner to detect cheating, identify cheaters and recover the correct secret. The construction is later generalised so the resulting secret sharing is resistant against the Tompa-Woll cheating.
Resumo:
The work investigates the design of ideal threshold secret sharing in the context of cheating prevention. We showed that each orthogonal array is exactly a defining matrix of an ideal threshold scheme. To prevent cheating, defining matrices should be nonlinear so both the cheaters and honest participants have the same chance of guessing of the valid secret. The last part of the work shows how to construct nonlinear secret sharing based on orthogonal arrays.
Resumo:
We present a novel implementation of the threshold RSA. Our solution is conceptually simple, and leads to an easy design of the system. The signing key is shared in additive form, which is desirable for collaboratively performing cryptographic transformations, and its size, at all times, is logn, where n is the RSA modulus. That is, the system is ideal.
Resumo:
We study the natural problem of secure n-party computation (in the passive, computationally unbounded attack model) of the n-product function f G (x 1,...,x n ) = x 1 ·x 2 ⋯ x n in an arbitrary finite group (G,·), where the input of party P i is x i ∈ G for i = 1,...,n. For flexibility, we are interested in protocols for f G which require only black-box access to the group G (i.e. the only computations performed by players in the protocol are a group operation, a group inverse, or sampling a uniformly random group element). Our results are as follows. First, on the negative side, we show that if (G,·) is non-abelian and n ≥ 4, then no ⌈n/2⌉-private protocol for computing f G exists. Second, on the positive side, we initiate an approach for construction of black-box protocols for f G based on k-of-k threshold secret sharing schemes, which are efficiently implementable over any black-box group G. We reduce the problem of constructing such protocols to a combinatorial colouring problem in planar graphs. We then give two constructions for such graph colourings. Our first colouring construction gives a protocol with optimal collusion resistance t < n/2, but has exponential communication complexity O(n*2t+1^2/t) group elements (this construction easily extends to general adversary structures). Our second probabilistic colouring construction gives a protocol with (close to optimal) collusion resistance t < n/μ for a graph-related constant μ ≤ 2.948, and has efficient communication complexity O(n*t^2) group elements. Furthermore, we believe that our results can be improved by further study of the associated combinatorial problems.
Resumo:
The power of sharing computation in a cryptosystem is crucial in several real-life applications of cryptography. Cryptographic primitives and tasks to which threshold cryptosystems have been applied include variants of digital signature, identification, public-key encryption and block ciphers etc. It is desirable to extend the domain of cryptographic primitives which threshold cryptography can be applied to. This paper studies threshold message authentication codes (threshold MACs). Threshold cryptosystems usually use algebraically homomorphic properties of the underlying cryptographic primitives. A typical approach to construct a threshold cryptographic scheme is to combine a (linear) secret sharing scheme with an algebraically homomorphic cryptographic primitive. The lack of algebraic properties of MACs rules out such an approach to share MACs. In this paper, we propose a method of obtaining a threshold MAC using a combinatorial approach. Our method is generic in the sense that it is applicable to any secure conventional MAC by making use of certain combinatorial objects, such as cover-free families and their variants. We discuss the issues of anonymity in threshold cryptography, a subject that has not been addressed previously in the literature in the field, and we show that there are trade-offis between the anonymity and efficiency of threshold MACs.
Resumo:
This series of research vignettes is aimed at sharing current and interesting research findings from international entrepreneurship researchers. In this vignette, Dr. Martin Obschonka, considers the relationship between entrepreneurship and rule-breaking.
Resumo:
Even though today’s corporations recognize that they need to understand modern project management techniques (Schwalbe, 2002, p2), many researchers continue to provide evidence of poor IT project success. With Kotnour, (2000) finding that project performance is positively associated with project knowledge, a better understanding of how to effectively manage knowledge in IT projects should have considerable practical significance for increasing the chances of project success. Using a combined qualitative/quantitative method of data collection in multiple case studies spanning four continents, and comprising a variety of organizational types, the focus of this current research centered on the question of why individuals working within IT project teams might be motivated towards, or inhibited from, sharing their knowledge and experience in their activities, procedures, and processes. The research concluded with the development of a new theoretical model of knowledge sharing behavior, ‘The Alignment Model of Motivational Focus’. This model suggests that an individual’s propensity to share knowledge and experience is a function of perceived personal benefits and costs associated with the activity, balanced against the individual’s alignment to a group of ‘institutional’ factors. These factors are identified as alignments to the project team, to the organization, and dependent on the circumstances, to either the professional discipline or community of practice, to which the individual belongs.