123 resultados para Schiff, Jacob H.Schiff, Jacob H.Jacob H.Schiff
Resumo:
This paper presents a three-dimensional numerical analysis of the electromagnetic forces within a high voltage superconducting Fault Current Limiter (FCL) with a saturated core under short-circuit conditions. The effects of electrodynamics forces in power transformer coils under short-circuit conditions have been reported widely. However, the coil arrangement in an FCL with saturated core differs significantly from existing reactive devices. The boundary element method is employed to perform an electromagnetic force analysis on an FCL. The analysis focuses on axial and radial forces of the AC coil. The results are compared to those of a power transformer and important design considerations are highlighted.
Resumo:
A tunable decoupling and matching network (DMN) for a closely spaced two-element antenna array is presented. The DMN achieves perfect matching for the eigenmodes of the array and thus simultaneously isolates and matches the system ports while keeping the circuit small. Arrays of closely spaced wire and microstrip monopole pairs are used to demonstrate the proposed DMN. It is found that monopoles with different lengths can be used for the design frequency by using this DMN, which increases the design flexibility. This property also enables frequency tuning using the DMN only without having to change the length of the antennas. The proposed DMN uses only one varactor to achieve a tuning range of 18.8% with both return loss and isolation better than 10-dB when the spacing between the antenna is 0.05λ. When the spacing increases to 0.1λ, the simulated tuning range is more than 60%.
Resumo:
The small element spacing of compact multiport arrays introduces strong mutual coupling between the antenna ports. Due to this coupling, the input impedance of the array changes when elements excitations are varied, and consequently, the array cannot be matched for an arbitrary excitation. Decoupling networks have in the past been used to provide an additional connection between antenna ports in order to cancel the coupling between elements. An alternative approach is to design the antenna so that each port does not excite a single element, but all elements simultaneously instead. The geometry of the antenna is optimized so that this direct excitation of elements counteracts the mutual coupling, thus yielding decoupled ports. This paper describes the design of such a 4-port antenna.
Resumo:
A 2-element elliptical patch antenna array with a bi-directional radiation pattern has been developed for ultra wideband indoor wireless communications. The array is constructed by means of feeding two omni-directional elliptical patch elements with a 3-section hybrid power divider. Experimental results show that the array has a stable radiation pattern and low return loss over a broad bandwidth of 64% (3.1 - 6 GHz).
Resumo:
A modified microstrip-fed planar monopole antenna with open circuited coupled line is presented in this paper. The operational bandwidth of the proposed antenna covers the 2.4 GHz ISM band (2.42-2.48 GHz) and the 5 GHz WLAN band (5 GHz to 6 GHz). The radiating elements occupy a small area of 23×8 mm2. The Finite Difference Time Domain method is used to predict the input impedance of the antenna. The calculated return loss shows very good agreement with measured data. Reasonable antenna gain is observed across the operating band. The measured radiation patterns are similar to those of a simple monopole antenna.
Resumo:
A novel reduced-size microstrip rectangular patch antenna for Bluetooth operation is presented in this paper. The proposed antenna operates in the 2400 to 2484 MHz ISM Band. Although an air substrate is introduced, antenna occupies a small volume of 33.3×6.6×0.8 mm3. The gain and the impedance bandwidth of the antenna are predicted using a commercial Finite Element Method software package. The predicted results show good agreement with measured data.
Resumo:
A double-layer rectangular patch microstrip antenna suitable for Bluetooth applications is investigated. The patch is etched on a separate substrate which is suspended above the ground plane and supported by an MCX connector. The air gap between the patch and the ground plane increases the impedance bandwidth and can be used to tune the resonant frequency. This paper presents experimental results on the effects of various parameters on the antenna characteristics and provides guidelines for the design of such an antenna.
Resumo:
An array of monopole elements with reduced element spacing of λ/6 to λ/20 is considered for application in digital beam-forming and direction-finding. The small element spacing introduces strong mutual coupling between the array elements. This paper discusses that decoupling can be achieved analytically for arrays with three elements and describes Kuroda’s identities to realize the lumped elements of the derived decoupling network. Design procedures and equations are proposed. Experimental results are presented. The decoupled array has a bandwidth of 1% and a superdirective radiation pattern.
Resumo:
A small array composed of three monopole elements with very small element spacing on the order of λ/6 to λ/20 is considered for application in adaptive beamforming. The properties of this 3-port array are governed by strong mutual coupling. It is shown that for signal-to-noise maximization, it is not sufficient to adjust the weights to compensate for the effects of mutual coupling. The necessity for a RF-decoupling network (RF-DN) and its simple realization are shown. The array with closely spaced elements together with the RF-DN represents a superdirective antenna with a directivity of more than 10 dBi. It is shown that the required fractional frequency bandwidth and the available unloaded Q of the antenna and RF-DN structure determine the lower limit for the element spacing.
Resumo:
This paper addresses the problem of degradations in adaptive digital beam-forming (DBF) systems caused by mutual coupling between array elements. The focus is on compact arrays with reduced element spacing and, hence, strongly coupled elements. Deviations in the radiation patterns of coupled and (theoretically) uncoupled elements can be compensated for by weight-adjustments in DBF, but SNR degradation due to impedance mismatches cannot be compensated for via signal processing techniques. It is shown that this problem can be overcome via the implementation of a RF-decoupling-network. SNR enhancement is achieved at the cost of a reduced frequency bandwidth and an increased sensitivity to dissipative losses in the antenna and matching network structure.
Resumo:
A practical method for the design of dual-band decoupling and matching networks (DMN) for two closely spaced antennas using discrete components is presented. The DMN reduces the port-to-port coupling and enhances the diversity of the antennas. By applying the DMN, the radiation efficiency can also be improved when one port is fed and the other port is match terminated. The proposed DMN works at two frequencies simultaneously without the need for any switch. As a proof of concept, a dual-band DMN for a pair of monopoles spaced 0.05λ apart is designed. The measured return loss and port isolation exceed 10 dB from 1.71 GHz to 1.76 GHz and from 2.27 GHz to 2.32 GHz.
Resumo:
This special issue of the Project Management Journal (PMJ) presents a collection of six of the best papers presented at the International Academy of African Business and Development (IAABD) conference held on May 17–20, 2011, in Edmonton, Alberta, Canada.
Resumo:
Purpose - This paper seeks to understand the impact of financial cost on customer value in health prevention services by comparing free government services with private fee-charging providers. This is important as there is a common belief that a free health service is of lower quality and thus lower value than a paid service. However there is no evidence to verify this notion. Design / Methodology / Approach - A large-scale online survey was administered nationwide to Australian women. The respondents were asked about the functional and emotional value derived from their service experiences. Findings - Structural equation modelling (SEM) revealed non significant relationships between fee/free services and functional and emotional value (FV/EV). The non-significant relationship with FV is contrary to the theory of price quality relationship in services. This could be attributed to consumer perceptions that the technical quality of health professionals is comparable across free and paid services. The non-significant relationship with EV could be explained by the indicators used to reflect EV. These indicators were reflective of breast screening behaviour, not breast screening services. Subsequently, it may be posited that the act of having a breast screen is sufficient for consumers to derive emotional value, regardless of the financial cost. Originality / Value - This research fills an important gap in the literature by investigating the impact of financial cost on a service that consumers use proactively(prevention), rather than reactively (treatment). Insights are provided into the impact of cost on customer value in preventive health services, which are valuable to social marketing academics, health practitioners, and governments